SQL interview questions with answers 😄👇
1. Question: What is SQL?
Answer: SQL (Structured Query Language) is a programming language designed for managing and manipulating relational databases. It is used to query, insert, update, and delete data in databases.
2. Question: Differentiate between SQL and MySQL.
Answer: SQL is a language for managing relational databases, while MySQL is an open-source relational database management system (RDBMS) that uses SQL as its language.
3. Question: Explain the difference between INNER JOIN and LEFT JOIN.
Answer: INNER JOIN returns rows when there is a match in both tables, while LEFT JOIN returns all rows from the left table and the matched rows from the right table, filling in with NULLs for non-matching rows.
4. Question: How do you remove duplicate records from a table?
Answer: Use the
5. Question: What is a subquery in SQL?
Answer: A subquery is a query nested inside another query. It can be used to retrieve data that will be used in the main query as a condition to further restrict the data to be retrieved.
6. Question: Explain the purpose of the GROUP BY clause.
Answer: The GROUP BY clause is used to group rows that have the same values in specified columns into summary rows, like when using aggregate functions such as COUNT, SUM, AVG, etc.
7. Question: How can you add a new record to a table?
Answer: Use the
8. Question: What is the purpose of the HAVING clause?
Answer: The HAVING clause is used in combination with the GROUP BY clause to filter the results of aggregate functions based on a specified condition.
9. Question: Explain the concept of normalization in databases.
Answer: Normalization is the process of organizing data in a database to reduce redundancy and improve data integrity. It involves breaking down tables into smaller, related tables.
10. Question: How do you update data in a table in SQL?
Answer: Use the
1. Question: What is SQL?
Answer: SQL (Structured Query Language) is a programming language designed for managing and manipulating relational databases. It is used to query, insert, update, and delete data in databases.
2. Question: Differentiate between SQL and MySQL.
Answer: SQL is a language for managing relational databases, while MySQL is an open-source relational database management system (RDBMS) that uses SQL as its language.
3. Question: Explain the difference between INNER JOIN and LEFT JOIN.
Answer: INNER JOIN returns rows when there is a match in both tables, while LEFT JOIN returns all rows from the left table and the matched rows from the right table, filling in with NULLs for non-matching rows.
4. Question: How do you remove duplicate records from a table?
Answer: Use the
DISTINCT keyword in a SELECT statement to retrieve unique records. For example: SELECT DISTINCT column1, column2 FROM table;5. Question: What is a subquery in SQL?
Answer: A subquery is a query nested inside another query. It can be used to retrieve data that will be used in the main query as a condition to further restrict the data to be retrieved.
6. Question: Explain the purpose of the GROUP BY clause.
Answer: The GROUP BY clause is used to group rows that have the same values in specified columns into summary rows, like when using aggregate functions such as COUNT, SUM, AVG, etc.
7. Question: How can you add a new record to a table?
Answer: Use the
INSERT INTO statement. For example: INSERT INTO table_name (column1, column2) VALUES (value1, value2);8. Question: What is the purpose of the HAVING clause?
Answer: The HAVING clause is used in combination with the GROUP BY clause to filter the results of aggregate functions based on a specified condition.
9. Question: Explain the concept of normalization in databases.
Answer: Normalization is the process of organizing data in a database to reduce redundancy and improve data integrity. It involves breaking down tables into smaller, related tables.
10. Question: How do you update data in a table in SQL?
Answer: Use the
UPDATE statement to modify existing records in a table. For example: UPDATE table_name SET column1 = value1 WHERE condition;❤7👏2
Core data science concepts you should know:
🔢 1. Statistics & Probability
Denoscriptive statistics: Mean, median, mode, standard deviation, variance
Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA
Probability distributions: Normal, Binomial, Poisson, Uniform
Bayes' Theorem
Central Limit Theorem
📊 2. Data Wrangling & Cleaning
Handling missing values
Outlier detection and treatment
Data transformation (scaling, encoding, normalization)
Feature engineering
Dealing with imbalanced data
📈 3. Exploratory Data Analysis (EDA)
Univariate, bivariate, and multivariate analysis
Correlation and covariance
Data visualization tools: Matplotlib, Seaborn, Plotly
Insights generation through visual storytelling
🤖 4. Machine Learning Fundamentals
Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN
Unsupervised Learning: K-means, hierarchical clustering, PCA
Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC
Cross-validation and overfitting/underfitting
Bias-variance tradeoff
🧠 5. Deep Learning (Basics)
Neural networks: Perceptron, MLP
Activation functions (ReLU, Sigmoid, Tanh)
Backpropagation
Gradient descent and learning rate
CNNs and RNNs (intro level)
🗃️ 6. Data Structures & Algorithms (DSA)
Arrays, lists, dictionaries, sets
Sorting and searching algorithms
Time and space complexity (Big-O notation)
Common problems: string manipulation, matrix operations, recursion
💾 7. SQL & Databases
SELECT, WHERE, GROUP BY, HAVING
JOINS (inner, left, right, full)
Subqueries and CTEs
Window functions
Indexing and normalization
📦 8. Tools & Libraries
Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch
R: dplyr, ggplot2, caret
Jupyter Notebooks for experimentation
Git and GitHub for version control
🧪 9. A/B Testing & Experimentation
Control vs. treatment group
Hypothesis formulation
Significance level, p-value interpretation
Power analysis
🌐 10. Business Acumen & Storytelling
Translating data insights into business value
Crafting narratives with data
Building dashboards (Power BI, Tableau)
Knowing KPIs and business metrics
React ❤️ for more
🔢 1. Statistics & Probability
Denoscriptive statistics: Mean, median, mode, standard deviation, variance
Inferential statistics: Hypothesis testing, confidence intervals, p-values, t-tests, ANOVA
Probability distributions: Normal, Binomial, Poisson, Uniform
Bayes' Theorem
Central Limit Theorem
📊 2. Data Wrangling & Cleaning
Handling missing values
Outlier detection and treatment
Data transformation (scaling, encoding, normalization)
Feature engineering
Dealing with imbalanced data
📈 3. Exploratory Data Analysis (EDA)
Univariate, bivariate, and multivariate analysis
Correlation and covariance
Data visualization tools: Matplotlib, Seaborn, Plotly
Insights generation through visual storytelling
🤖 4. Machine Learning Fundamentals
Supervised Learning: Linear regression, logistic regression, decision trees, SVM, k-NN
Unsupervised Learning: K-means, hierarchical clustering, PCA
Model evaluation: Accuracy, precision, recall, F1-score, ROC-AUC
Cross-validation and overfitting/underfitting
Bias-variance tradeoff
🧠 5. Deep Learning (Basics)
Neural networks: Perceptron, MLP
Activation functions (ReLU, Sigmoid, Tanh)
Backpropagation
Gradient descent and learning rate
CNNs and RNNs (intro level)
🗃️ 6. Data Structures & Algorithms (DSA)
Arrays, lists, dictionaries, sets
Sorting and searching algorithms
Time and space complexity (Big-O notation)
Common problems: string manipulation, matrix operations, recursion
💾 7. SQL & Databases
SELECT, WHERE, GROUP BY, HAVING
JOINS (inner, left, right, full)
Subqueries and CTEs
Window functions
Indexing and normalization
📦 8. Tools & Libraries
Python: pandas, NumPy, scikit-learn, TensorFlow, PyTorch
R: dplyr, ggplot2, caret
Jupyter Notebooks for experimentation
Git and GitHub for version control
🧪 9. A/B Testing & Experimentation
Control vs. treatment group
Hypothesis formulation
Significance level, p-value interpretation
Power analysis
🌐 10. Business Acumen & Storytelling
Translating data insights into business value
Crafting narratives with data
Building dashboards (Power BI, Tableau)
Knowing KPIs and business metrics
React ❤️ for more
❤11
Steps to become a data analyst
Learn the Basics of Data Analysis:
Familiarize yourself with foundational concepts in data analysis, statistics, and data visualization. Online courses and textbooks can help.
Free books & other useful data analysis resources - https://news.1rj.ru/str/learndataanalysis
Develop Technical Skills:
Gain proficiency in essential tools and technologies such as:
SQL: Learn how to query and manipulate data in relational databases.
Free Resources- @sqlanalyst
Excel: Master data manipulation, basic analysis, and visualization.
Free Resources- @excel_analyst
Data Visualization Tools: Become skilled in tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn.
Free Resources- @PowerBI_analyst
Programming: Learn a programming language like Python or R for data analysis and manipulation.
Free Resources- @pythonanalyst
Statistical Packages: Familiarize yourself with packages like Pandas, NumPy, and SciPy (for Python) or ggplot2 (for R).
Hands-On Practice:
Apply your knowledge to real datasets. You can find publicly available datasets on platforms like Kaggle or create your datasets for analysis.
Build a Portfolio:
Create data analysis projects to showcase your skills. Share them on platforms like GitHub, where potential employers can see your work.
Networking:
Attend data-related meetups, conferences, and online communities. Networking can lead to job opportunities and valuable insights.
Data Analysis Projects:
Work on personal or freelance data analysis projects to gain experience and demonstrate your abilities.
Job Search:
Start applying for entry-level data analyst positions or internships. Look for job listings on company websites, job boards, and LinkedIn.
Jobs & Internship opportunities: @getjobss
Prepare for Interviews:
Practice common data analyst interview questions and be ready to discuss your past projects and experiences.
Continual Learning:
The field of data analysis is constantly evolving. Stay updated with new tools, techniques, and industry trends.
Soft Skills:
Develop soft skills like critical thinking, problem-solving, communication, and attention to detail, as they are crucial for data analysts.
Never ever give up:
The journey to becoming a data analyst can be challenging, with complex concepts and technical skills to learn. There may be moments of frustration and self-doubt, but remember that these are normal parts of the learning process. Keep pushing through setbacks, keep learning, and stay committed to your goal.
ENJOY LEARNING 👍👍
Learn the Basics of Data Analysis:
Familiarize yourself with foundational concepts in data analysis, statistics, and data visualization. Online courses and textbooks can help.
Free books & other useful data analysis resources - https://news.1rj.ru/str/learndataanalysis
Develop Technical Skills:
Gain proficiency in essential tools and technologies such as:
SQL: Learn how to query and manipulate data in relational databases.
Free Resources- @sqlanalyst
Excel: Master data manipulation, basic analysis, and visualization.
Free Resources- @excel_analyst
Data Visualization Tools: Become skilled in tools like Tableau, Power BI, or Python libraries like Matplotlib and Seaborn.
Free Resources- @PowerBI_analyst
Programming: Learn a programming language like Python or R for data analysis and manipulation.
Free Resources- @pythonanalyst
Statistical Packages: Familiarize yourself with packages like Pandas, NumPy, and SciPy (for Python) or ggplot2 (for R).
Hands-On Practice:
Apply your knowledge to real datasets. You can find publicly available datasets on platforms like Kaggle or create your datasets for analysis.
Build a Portfolio:
Create data analysis projects to showcase your skills. Share them on platforms like GitHub, where potential employers can see your work.
Networking:
Attend data-related meetups, conferences, and online communities. Networking can lead to job opportunities and valuable insights.
Data Analysis Projects:
Work on personal or freelance data analysis projects to gain experience and demonstrate your abilities.
Job Search:
Start applying for entry-level data analyst positions or internships. Look for job listings on company websites, job boards, and LinkedIn.
Jobs & Internship opportunities: @getjobss
Prepare for Interviews:
Practice common data analyst interview questions and be ready to discuss your past projects and experiences.
Continual Learning:
The field of data analysis is constantly evolving. Stay updated with new tools, techniques, and industry trends.
Soft Skills:
Develop soft skills like critical thinking, problem-solving, communication, and attention to detail, as they are crucial for data analysts.
Never ever give up:
The journey to becoming a data analyst can be challenging, with complex concepts and technical skills to learn. There may be moments of frustration and self-doubt, but remember that these are normal parts of the learning process. Keep pushing through setbacks, keep learning, and stay committed to your goal.
ENJOY LEARNING 👍👍
❤3🔥2👏1
Data Analyst: Analyzes data to provide insights and reports for decision-making.
Data Scientist: Builds models to predict outcomes and uncover deeper insights from data.
Data Engineer: Creates and maintains the systems that store and process data.
Data Scientist: Builds models to predict outcomes and uncover deeper insights from data.
Data Engineer: Creates and maintains the systems that store and process data.
❤5👍1
If you want to Excel in Data Science and become an expert, master these essential concepts:
Core Data Science Skills:
• Python for Data Science – Pandas, NumPy, Matplotlib, Seaborn
• SQL for Data Extraction – SELECT, JOIN, GROUP BY, CTEs, Window Functions
• Data Cleaning & Preprocessing – Handling missing data, outliers, duplicates
• Exploratory Data Analysis (EDA) – Visualizing data trends
Machine Learning (ML):
• Supervised Learning – Linear Regression, Decision Trees, Random Forest
• Unsupervised Learning – Clustering, PCA, Anomaly Detection
• Model Evaluation – Cross-validation, Confusion Matrix, ROC-AUC
• Hyperparameter Tuning – Grid Search, Random Search
Deep Learning (DL):
• Neural Networks – TensorFlow, PyTorch, Keras
• CNNs & RNNs – Image & sequential data processing
• Transformers & LLMs – GPT, BERT, Stable Diffusion
Big Data & Cloud Computing:
• Hadoop & Spark – Handling large datasets
• AWS, GCP, Azure – Cloud-based data science solutions
• MLOps – Deploy models using Flask, FastAPI, Docker
Statistics & Mathematics for Data Science:
• Probability & Hypothesis Testing – P-values, T-tests, Chi-square
• Linear Algebra & Calculus – Matrices, Vectors, Derivatives
• Time Series Analysis – ARIMA, Prophet, LSTMs
Real-World Applications:
• Recommendation Systems – Personalized AI suggestions
• NLP (Natural Language Processing) – Sentiment Analysis, Chatbots
• AI-Powered Business Insights – Data-driven decision-making
React with ❤️ for more
Core Data Science Skills:
• Python for Data Science – Pandas, NumPy, Matplotlib, Seaborn
• SQL for Data Extraction – SELECT, JOIN, GROUP BY, CTEs, Window Functions
• Data Cleaning & Preprocessing – Handling missing data, outliers, duplicates
• Exploratory Data Analysis (EDA) – Visualizing data trends
Machine Learning (ML):
• Supervised Learning – Linear Regression, Decision Trees, Random Forest
• Unsupervised Learning – Clustering, PCA, Anomaly Detection
• Model Evaluation – Cross-validation, Confusion Matrix, ROC-AUC
• Hyperparameter Tuning – Grid Search, Random Search
Deep Learning (DL):
• Neural Networks – TensorFlow, PyTorch, Keras
• CNNs & RNNs – Image & sequential data processing
• Transformers & LLMs – GPT, BERT, Stable Diffusion
Big Data & Cloud Computing:
• Hadoop & Spark – Handling large datasets
• AWS, GCP, Azure – Cloud-based data science solutions
• MLOps – Deploy models using Flask, FastAPI, Docker
Statistics & Mathematics for Data Science:
• Probability & Hypothesis Testing – P-values, T-tests, Chi-square
• Linear Algebra & Calculus – Matrices, Vectors, Derivatives
• Time Series Analysis – ARIMA, Prophet, LSTMs
Real-World Applications:
• Recommendation Systems – Personalized AI suggestions
• NLP (Natural Language Processing) – Sentiment Analysis, Chatbots
• AI-Powered Business Insights – Data-driven decision-making
React with ❤️ for more
❤9👍1
SQL Cheatsheet 📝
This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether you’re a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.
1. Database Basics
-
-
2. Tables
- Create Table:
- Drop Table:
- Alter Table:
3. Insert Data
-
4. Select Queries
- Basic Select:
- Select Specific Columns:
- Select with Condition:
5. Update Data
-
6. Delete Data
-
7. Joins
- Inner Join:
- Left Join:
- Right Join:
8. Aggregations
- Count:
- Sum:
- Group By:
9. Sorting & Limiting
- Order By:
- Limit Results:
10. Indexes
- Create Index:
- Drop Index:
11. Subqueries
-
12. Views
- Create View:
- Drop View:
This SQL cheatsheet is designed to be your quick reference guide for SQL programming. Whether you’re a beginner learning how to query databases or an experienced developer looking for a handy resource, this cheatsheet covers essential SQL topics.
1. Database Basics
-
CREATE DATABASE db_name;-
USE db_name;2. Tables
- Create Table:
CREATE TABLE table_name (col1 datatype, col2 datatype);- Drop Table:
DROP TABLE table_name;- Alter Table:
ALTER TABLE table_name ADD column_name datatype;3. Insert Data
-
INSERT INTO table_name (col1, col2) VALUES (val1, val2);4. Select Queries
- Basic Select:
SELECT * FROM table_name;- Select Specific Columns:
SELECT col1, col2 FROM table_name;- Select with Condition:
SELECT * FROM table_name WHERE condition;5. Update Data
-
UPDATE table_name SET col1 = value1 WHERE condition;6. Delete Data
-
DELETE FROM table_name WHERE condition;7. Joins
- Inner Join:
SELECT * FROM table1 INNER JOIN table2 ON table1.col = table2.col;- Left Join:
SELECT * FROM table1 LEFT JOIN table2 ON table1.col = table2.col;- Right Join:
SELECT * FROM table1 RIGHT JOIN table2 ON table1.col = table2.col;8. Aggregations
- Count:
SELECT COUNT(*) FROM table_name;- Sum:
SELECT SUM(col) FROM table_name;- Group By:
SELECT col, COUNT(*) FROM table_name GROUP BY col;9. Sorting & Limiting
- Order By:
SELECT * FROM table_name ORDER BY col ASC|DESC;- Limit Results:
SELECT * FROM table_name LIMIT n;10. Indexes
- Create Index:
CREATE INDEX idx_name ON table_name (col);- Drop Index:
DROP INDEX idx_name;11. Subqueries
-
SELECT * FROM table_name WHERE col IN (SELECT col FROM other_table);12. Views
- Create View:
CREATE VIEW view_name AS SELECT * FROM table_name;- Drop View:
DROP VIEW view_name;❤5🔥1
🚀 Complete Roadmap to Become a Data Scientist in 5 Months
📅 Week 1-2: Fundamentals
✅ Day 1-3: Introduction to Data Science, its applications, and roles.
✅ Day 4-7: Brush up on Python programming 🐍.
✅ Day 8-10: Learn basic statistics 📊 and probability 🎲.
🔍 Week 3-4: Data Manipulation & Visualization
📝 Day 11-15: Master Pandas for data manipulation.
📈 Day 16-20: Learn Matplotlib & Seaborn for data visualization.
🤖 Week 5-6: Machine Learning Foundations
🔬 Day 21-25: Introduction to scikit-learn.
📊 Day 26-30: Learn Linear & Logistic Regression.
🏗 Week 7-8: Advanced Machine Learning
🌳 Day 31-35: Explore Decision Trees & Random Forests.
📌 Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
🧠 Week 9-10: Deep Learning
🤖 Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
📸 Day 46-50: Learn CNNs & RNNs for image & text data.
🏛 Week 11-12: Data Engineering
🗄 Day 51-55: Learn SQL & Databases.
🧹 Day 56-60: Data Preprocessing & Cleaning.
📊 Week 13-14: Model Evaluation & Optimization
📏 Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
📉 Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
🏗 Week 15-16: Big Data & Tools
🐘 Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
☁️ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
🚀 Week 17-18: Deployment & Production
🛠 Day 81-85: Deploy models using Flask or FastAPI.
📦 Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
🎯 Week 19-20: Specialization
📝 Day 91-95: Choose NLP or Computer Vision, based on your interest.
🏆 Week 21-22: Projects & Portfolio
📂 Day 96-100: Work on Personal Data Science Projects.
💬 Week 23-24: Soft Skills & Networking
🎤 Day 101-105: Improve Communication & Presentation Skills.
🌐 Day 106-110: Attend Online Meetups & Forums.
🎯 Week 25-26: Interview Preparation
💻 Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
📂 Day 116-120: Review your projects & prepare for discussions.
👨💻 Week 27-28: Apply for Jobs
📩 Day 121-125: Start applying for Entry-Level Data Scientist positions.
🎤 Week 29-30: Interviews
📝 Day 126-130: Attend Interviews & Practice Whiteboard Problems.
🔄 Week 31-32: Continuous Learning
📰 Day 131-135: Stay updated with the Latest Data Science Trends.
🏆 Week 33-34: Accepting Offers
📝 Day 136-140: Evaluate job offers & Negotiate Your Salary.
🏢 Week 35-36: Settling In
🎯 Day 141-150: Start your New Data Science Job, adapt & keep learning!
🎉 Enjoy Learning & Build Your Dream Career in Data Science! 🚀🔥
📅 Week 1-2: Fundamentals
✅ Day 1-3: Introduction to Data Science, its applications, and roles.
✅ Day 4-7: Brush up on Python programming 🐍.
✅ Day 8-10: Learn basic statistics 📊 and probability 🎲.
🔍 Week 3-4: Data Manipulation & Visualization
📝 Day 11-15: Master Pandas for data manipulation.
📈 Day 16-20: Learn Matplotlib & Seaborn for data visualization.
🤖 Week 5-6: Machine Learning Foundations
🔬 Day 21-25: Introduction to scikit-learn.
📊 Day 26-30: Learn Linear & Logistic Regression.
🏗 Week 7-8: Advanced Machine Learning
🌳 Day 31-35: Explore Decision Trees & Random Forests.
📌 Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
🧠 Week 9-10: Deep Learning
🤖 Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
📸 Day 46-50: Learn CNNs & RNNs for image & text data.
🏛 Week 11-12: Data Engineering
🗄 Day 51-55: Learn SQL & Databases.
🧹 Day 56-60: Data Preprocessing & Cleaning.
📊 Week 13-14: Model Evaluation & Optimization
📏 Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
📉 Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
🏗 Week 15-16: Big Data & Tools
🐘 Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
☁️ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
🚀 Week 17-18: Deployment & Production
🛠 Day 81-85: Deploy models using Flask or FastAPI.
📦 Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
🎯 Week 19-20: Specialization
📝 Day 91-95: Choose NLP or Computer Vision, based on your interest.
🏆 Week 21-22: Projects & Portfolio
📂 Day 96-100: Work on Personal Data Science Projects.
💬 Week 23-24: Soft Skills & Networking
🎤 Day 101-105: Improve Communication & Presentation Skills.
🌐 Day 106-110: Attend Online Meetups & Forums.
🎯 Week 25-26: Interview Preparation
💻 Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
📂 Day 116-120: Review your projects & prepare for discussions.
👨💻 Week 27-28: Apply for Jobs
📩 Day 121-125: Start applying for Entry-Level Data Scientist positions.
🎤 Week 29-30: Interviews
📝 Day 126-130: Attend Interviews & Practice Whiteboard Problems.
🔄 Week 31-32: Continuous Learning
📰 Day 131-135: Stay updated with the Latest Data Science Trends.
🏆 Week 33-34: Accepting Offers
📝 Day 136-140: Evaluate job offers & Negotiate Your Salary.
🏢 Week 35-36: Settling In
🎯 Day 141-150: Start your New Data Science Job, adapt & keep learning!
🎉 Enjoy Learning & Build Your Dream Career in Data Science! 🚀🔥
❤7