Data Science Jobs – Telegram
Data Science Jobs
7.79K subscribers
217 photos
1 video
42 files
715 links
Join this channel to get job & internship updates related to data science, machine learning data engineering, artificial intelligence & data analytics fields.
Download Telegram
LLM Project Ideas 👆
3
Forwarded from Python for Data Analysts
𝗟𝗲𝗮𝗿𝗻 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗳𝗼𝗿 𝗙𝗥𝗘𝗘 𝘄𝗶𝘁𝗵 𝗛𝗮𝗿𝘃𝗮𝗿𝗱 𝗨𝗻𝗶𝘃𝗲𝗿𝘀𝗶𝘁𝘆😍

🎯 Want to break into Data Science without spending a single rupee?💰

Harvard University is offering a goldmine of free courses that make top-tier education accessible to anyone, anywhere👨‍💻✨️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3HxOgTW

These courses are designed by Ivy League experts and are trusted by thousands globally✅️
Step-by-Step Roadmap to Learn Data Science in 2025:

Step 1: Understand the Role
A data scientist in 2025 is expected to:

Analyze data to extract insights

Build predictive models using ML

Communicate findings to stakeholders

Work with large datasets in cloud environments


Step 2: Master the Prerequisite Skills

A. Programming

Learn Python (must-have): Focus on pandas, numpy, matplotlib, seaborn, scikit-learn

R (optional but helpful for statistical analysis)

SQL: Strong command over data extraction and transformation


B. Math & Stats

Probability, Denoscriptive & Inferential Statistics

Linear Algebra & Calculus (only what's necessary for ML)

Hypothesis testing


Step 3: Learn Data Handling

Data Cleaning, Preprocessing

Exploratory Data Analysis (EDA)

Feature Engineering

Tools: Python (pandas), Excel, SQL


Step 4: Master Machine Learning

Supervised Learning: Linear/Logistic Regression, Decision Trees, Random Forests, XGBoost

Unsupervised Learning: K-Means, Hierarchical Clustering, PCA

Deep Learning (optional): Use TensorFlow or PyTorch

Evaluation Metrics: Accuracy, AUC, Confusion Matrix, RMSE


Step 5: Learn Data Visualization & Storytelling

Python (matplotlib, seaborn, plotly)

Power BI / Tableau

Communicating insights clearly is as important as modeling


Step 6: Use Real Datasets & Projects

Work on projects using Kaggle, UCI, or public APIs

Examples:

Customer churn prediction

Sales forecasting

Sentiment analysis

Fraud detection



Step 7: Understand Cloud & MLOps (2025+ Skills)

Cloud: AWS (S3, EC2, SageMaker), GCP, or Azure

MLOps: Model deployment (Flask, FastAPI), CI/CD for ML, Docker basics


Step 8: Build Portfolio & Resume

Create GitHub repos with well-documented code

Post projects and blogs on Medium or LinkedIn

Prepare a data science-specific resume


Step 9: Apply Smartly

Focus on job roles like: Data Scientist, ML Engineer, Data Analyst → DS

Use platforms like LinkedIn, Glassdoor, Hirect, AngelList, etc.

Practice data science interviews: case studies, ML concepts, SQL + Python coding


Step 10: Keep Learning & Updating

Follow top newsletters: Data Elixir, Towards Data Science

Read papers (arXiv, Google Scholar) on trending topics: LLMs, AutoML, Explainable AI

Upskill with certifications (Google Data Cert, Coursera, DataCamp, Udemy)

Free Resources to learn Data Science

Kaggle Courses: https://www.kaggle.com/learn

CS50 AI by Harvard: https://cs50.harvard.edu/ai/

Fast.ai: https://course.fast.ai/

Google ML Crash Course: https://developers.google.com/machine-learning/crash-course

Data Science Learning Series: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D/998

Data Science Books: https://news.1rj.ru/str/datalemur

React ❤️ for more
2
Forwarded from Python for Data Analysts
𝟳 𝗙𝗿𝗲𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗨𝗽𝗴𝗿𝗮𝗱𝗲 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲 𝗶𝗻 𝟮𝟬𝟮𝟱 𝗮𝗻𝗱 𝗦𝘁𝗮𝗻𝗱 𝗢𝘂𝘁😍

🚀 Want to Make Your Resume Stand Out in 2025?✨️

If you’re aiming to boost your chances in job interviews or want to upgrade your resume with powerful, in-demand skills — start with these 7 free online courses👨‍💻📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3SJ91OV

Empower yourself and take your career to the next level!
1
Data Science Learning Plan

Step 1: Mathematics for Data Science (Statistics, Probability, Linear Algebra)

Step 2: Python for Data Science (Basics and Libraries)

Step 3: Data Manipulation and Analysis (Pandas, NumPy)

Step 4: Data Visualization (Matplotlib, Seaborn, Plotly)

Step 5: Databases and SQL for Data Retrieval

Step 6: Introduction to Machine Learning (Supervised and Unsupervised Learning)

Step 7: Data Cleaning and Preprocessing

Step 8: Feature Engineering and Selection

Step 9: Model Evaluation and Tuning

Step 10: Deep Learning (Neural Networks, TensorFlow, Keras)

Step 11: Working with Big Data (Hadoop, Spark)

Step 12: Building Data Science Projects and Portfolio

Data Science Resources
👇👇
https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y

Like for more 😄
4
Forwarded from Python for Data Analysts
𝟰 𝗛𝗶𝗴𝗵-𝗜𝗺𝗽𝗮𝗰𝘁 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗟𝗮𝘂𝗻𝗰𝗵 𝗬𝗼𝘂𝗿 𝗖𝗮𝗿𝗲𝗲𝗿 𝗶𝗻 𝟮𝟬𝟮𝟱😍

These globally recognized certifications from platforms like Google, IBM, Microsoft, and DataCamp are beginner-friendly, industry-aligned, and designed to make you job-ready in just a few weeks

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4kC18XE

These courses help you gain hands-on experience — exactly what top MNCs look for!✅️
2
𝟭𝟬𝟬𝟬+ 𝗙𝗿𝗲𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗲𝗱 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗯𝘆 𝗜𝗻𝗳𝗼𝘀𝘆𝘀 – 𝗟𝗲𝗮𝗿𝗻, 𝗚𝗿𝗼𝘄, 𝗦𝘂𝗰𝗰𝗲𝗲𝗱!😍

🚀 Looking to upgrade your skills without spending a rupee?💰

Here’s your golden opportunity to unlock 1,000+ certified online courses across technology, business, communication, leadership, soft skills, and much more — all absolutely FREE on Infosys Springboard!🔥

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/43UcmQ7

Save this blog, sign up, and start your upskilling journey today!✅️
Forwarded from Data Analyst Jobs
Truecaller is hiring!
Position: Data Science & Analytics
Qualification: Bachelor’s/ Master’s Degree
Salary: 5 - 15 LPA (Expected)
Experience: Freshers/ Experienced
Location: India

📌Apply Now: https://www.truecaller.com/careers/jobs/6909917

👉 WhatsApp Channel: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226

👉 Telegram Channel: https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5

All the best! 👍👍
1
𝗙𝗿𝗲𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲: 𝗧𝗵𝗲 𝗕𝗲𝘀𝘁 𝗦𝘁𝗮𝗿𝘁𝗶𝗻𝗴 𝗣𝗼𝗶𝗻𝘁 𝗳𝗼𝗿 𝗧𝗲𝗰𝗵 & 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀😍

🚀 Want to break into tech or data analytics but don’t know how to start?📌✨️

Python is the #1 most in-demand programming language, and Scaler’s free Python for Beginners course is a game-changer for absolute beginners📊✔️

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45TroYX

No coding background needed!✅️
1
𝟭𝟬𝟬% 𝗙𝗿𝗲𝗲 𝗧𝗲𝗰𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀😍

From data science and AI to web development and cloud computing, checkout Top 5 Websites for Free Tech Certification Courses in 2025

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4e76jMX

Enroll For FREE & Get Certified!✅️
1
Forwarded from Data Analyst Jobs
Uber hiring Data Scientist

Apply link: https://www.uber.com/global/en/careers/list/141654

👉 WhatsApp Channel: https://whatsapp.com/channel/0029VaI5CV93AzNUiZ5Tt226

👉 Telegram Channel: https://news.1rj.ru/str/addlist/4q2PYC0pH_VjZDk5

All the best! 👍👍
1
𝐀𝐦𝐚𝐳𝐨𝐧 𝐅𝐑𝐄𝐄 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧 𝐂𝐨𝐮𝐫𝐬𝐞𝐬 😍

Learn AI for free with Amazon's incredible courses!

These courses are perfect to upskill in AI and kickstart your journey in this revolutionary field.

𝐋𝐢𝐧𝐤 👇:-

https://bit.ly/3CUBpZw

Don’t miss out—enroll today and unlock new career opportunities! 💻📈
This media is not supported in your browser
VIEW IN TELEGRAM
 🤖T22 - The best-in-class telegram group bot!

Stop juggling bots: T22 is Rose x GroupHelp x Safeguard 👇👇

🔐 Verification & Captcha
🛡 Advanced Moderation Tools
📈 Leveling System
💬 Smart Welcome Flows
🐦 Twitter Raids
🧠 Mini-App Dashboard
📦 Rose Config Importer

Discover T22 🆓
By MEE6 Creator
3
If you want to Excel in Data Science and become an expert, master these essential concepts:

Core Data Science Skills:

• Python for Data Science – Pandas, NumPy, Matplotlib, Seaborn
• SQL for Data Extraction – SELECT, JOIN, GROUP BY, CTEs, Window Functions
• Data Cleaning & Preprocessing – Handling missing data, outliers, duplicates
• Exploratory Data Analysis (EDA) – Visualizing data trends

Machine Learning (ML):

• Supervised Learning – Linear Regression, Decision Trees, Random Forest
• Unsupervised Learning – Clustering, PCA, Anomaly Detection
• Model Evaluation – Cross-validation, Confusion Matrix, ROC-AUC
• Hyperparameter Tuning – Grid Search, Random Search

Deep Learning (DL):

• Neural Networks – TensorFlow, PyTorch, Keras
• CNNs & RNNs – Image & sequential data processing
• Transformers & LLMs – GPT, BERT, Stable Diffusion

Big Data & Cloud Computing:

• Hadoop & Spark – Handling large datasets
• AWS, GCP, Azure – Cloud-based data science solutions
• MLOps – Deploy models using Flask, FastAPI, Docker

Statistics & Mathematics for Data Science:

• Probability & Hypothesis Testing – P-values, T-tests, Chi-square
• Linear Algebra & Calculus – Matrices, Vectors, Derivatives
• Time Series Analysis – ARIMA, Prophet, LSTMs

Real-World Applications:

• Recommendation Systems – Personalized AI suggestions
• NLP (Natural Language Processing) – Sentiment Analysis, Chatbots
• AI-Powered Business Insights – Data-driven decision-making

Like this post if you need a complete tutorial on essential data science topics! 👍❤️

Join our WhatsApp channel: https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D
2
Forwarded from Remote Jobs
Data Science & Analytics Job Opportunities -

Actively job hunting? Here's a curated list of open roles — from entry-level to senior positions:

💼 Open Roles:

1️⃣ Data Analyst – Newell Brands (📍Atlanta, GA)
🧑💼 Entry-level (— around 1-3 year experience)
🔗 Apply here : https://lnkd.in/ewEjFqYa

2️⃣ Revenue Operational Analyst – Field Nation (📍Remote)
🧑💼 Entry-Mid-level (— around 2-4 years experience)
🔗 Apply here : https://lnkd.in/eMk6MhNP

3️⃣ Data Analyst – DTE Energy (📍Detroit, MI)
🧑💼 Entry-level (— around 3+ years experience)
🔗 Apply here : https://lnkd.in/emEzNZkv

4️⃣ Data Analytics – City of Philadelphia (📍Philadelphia, PA)
🧑💼 Entry-level (— around 3-5 year experience)
🔗 Apply here : https://lnkd.in/eicgiwsB

5️⃣ BI Engineer – Jackson Health System (📍Miami, FL)
🧑💼 Entry-Mid-level (— around 3 year experience)
🔗 Apply here : https://lnkd.in/e4NXkYgQ

6️⃣ Analyst – ArchWell Health (📍Nashville, TN)
🧑💼 Entry-Level (— around 1-2 year experience)
🔗 Apply here : https://lnkd.in/eh_aUHmh

7️⃣ Data scientist I – Harris County Sheriff's Office (📍Des Moines, IA )
🧑💼 Entry-level (— around 1 year experience)
🔗 Apply here : https://lnkd.in/eWc8GWZd

8️⃣ Financial Analyst II – Dignity Health (📍Chandler, AZ)
🧑💼 Entry-level (— around 1 year experience)
🔗 Apply here : https://lnkd.in/eWvXEJ-U

9️⃣ BI Analyst – Integrated Services for Behavioral Health (📍McArthur, OH)
🧑💼 Mid-level (— around 3-4 years experience)
🔗 Apply here : https://lnkd.in/eWrd5uTQ

🔟 Data Engineer – Costco Wholesale (📍Seattle, WA)
🧑💼 Entry-level (— around 2 years experience)
🔗 Apply here : https://lnkd.in/eyrggt3u
2👍1
Forwarded from Python for Data Analysts
𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗥𝗼𝗮𝗱𝗺𝗮𝗽 𝗳𝗼𝗿 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀: 𝟱 𝗦𝘁𝗲𝗽𝘀 𝘁𝗼 𝗦𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗝𝗼𝘂𝗿𝗻𝗲𝘆😍

Want to break into Data Science but don’t know where to begin?👨‍💻📌

You’re not alone. Data Science is one of the most in-demand fields today, but with so many courses online, it can feel overwhelming.💫📲

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3SU5FJ0

No prior experience needed!✅️
3
𝟱 𝗖𝗼𝗱𝗶𝗻𝗴 𝗖𝗵𝗮𝗹𝗹𝗲𝗻𝗴𝗲𝘀 𝗧𝗵𝗮𝘁 𝗔𝗰𝘁𝘂𝗮𝗹𝗹𝘆 𝗠𝗮𝘁𝘁𝗲𝗿 𝗙𝗼𝗿 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝘁𝗶𝘀𝘁𝘀 💻

You don’t need to be a LeetCode grandmaster.
But data science interviews still test your problem-solving mindset—and these 5 types of challenges are the ones that actually matter.

Here’s what to focus on (with examples) 👇

🔹 1. String Manipulation (Common in Data Cleaning)

Parse messy columns (e.g., split “Name_Age_City”)
Regex to extract phone numbers, emails, URLs
Remove stopwords or HTML tags in text data

Example: Clean up a scraped dataset from LinkedIn bias

🔹 2. GroupBy and Aggregation with Pandas

Group sales data by product/region
Calculate avg, sum, count using .groupby()
Handle missing values smartly

Example: “What’s the top-selling product in each region?”

🔹 3. SQL Join + Window Functions

INNER JOIN, LEFT JOIN to merge tables
ROW_NUMBER(), RANK(), LEAD(), LAG() for trends
Use CTEs to break complex queries

Example: “Get 2nd highest salary in each department”

🔹 4. Data Structures: Lists, Dicts, Sets in Python

Use dictionaries to map, filter, and count
Remove duplicates with sets
List comprehensions for clean solutions

Example: “Count frequency of hashtags in tweets”

🔹 5. Basic Algorithms (Not DP or Graphs)

Sliding window for moving averages
Two pointers for duplicate detection
Binary search in sorted arrays

Example: “Detect if a pair of values sum to 100”

🎯 Tip: Practice challenges that feel like real-world data work, not textbook CS exams.

Use platforms like:

StrataScratch
Hackerrank (SQL + Python)
Kaggle Code

I have curated the best interview resources to crack Data Science Interviews
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍
3
𝗧𝗼𝗽 𝗧𝗲𝗰𝗵 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 - 𝗖𝗿𝗮𝗰𝗸 𝗬𝗼𝘂𝗿 𝗡𝗲𝘅𝘁 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄😍

𝗦𝗤𝗟:- https://pdlink.in/3SMHxaZ

𝗣𝘆𝘁𝗵𝗼𝗻 :- https://pdlink.in/3FJhizk

𝗝𝗮𝘃𝗮  :- https://pdlink.in/4dWkAMf

𝗗𝗦𝗔 :- https://pdlink.in/3FsDA8j

 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 :- https://pdlink.in/4jLOJ2a

𝗣𝗼𝘄𝗲𝗿 𝗕𝗜 :-  https://pdlink.in/4dFem3o

𝗖𝗼𝗱𝗶𝗻𝗴 :- https://pdlink.in/3F00oMw

Get Your Dream Tech Job In Your Dream Company💫
1
Here are some essential data science concepts from A to Z:

A - Algorithm: A set of rules or instructions used to solve a problem or perform a task in data science.

B - Big Data: Large and complex datasets that cannot be easily processed using traditional data processing applications.

C - Clustering: A technique used to group similar data points together based on certain characteristics.

D - Data Cleaning: The process of identifying and correcting errors or inconsistencies in a dataset.

E - Exploratory Data Analysis (EDA): The process of analyzing and visualizing data to understand its underlying patterns and relationships.

F - Feature Engineering: The process of creating new features or variables from existing data to improve model performance.

G - Gradient Descent: An optimization algorithm used to minimize the error of a model by adjusting its parameters.

H - Hypothesis Testing: A statistical technique used to test the validity of a hypothesis or claim based on sample data.

I - Imputation: The process of filling in missing values in a dataset using statistical methods.

J - Joint Probability: The probability of two or more events occurring together.

K - K-Means Clustering: A popular clustering algorithm that partitions data into K clusters based on similarity.

L - Linear Regression: A statistical method used to model the relationship between a dependent variable and one or more independent variables.

M - Machine Learning: A subset of artificial intelligence that uses algorithms to learn patterns and make predictions from data.

N - Normal Distribution: A symmetrical bell-shaped distribution that is commonly used in statistical analysis.

O - Outlier Detection: The process of identifying and removing data points that are significantly different from the rest of the dataset.

P - Precision and Recall: Evaluation metrics used to assess the performance of classification models.

Q - Quantitative Analysis: The process of analyzing numerical data to draw conclusions and make decisions.

R - Random Forest: An ensemble learning algorithm that builds multiple decision trees to improve prediction accuracy.

S - Support Vector Machine (SVM): A supervised learning algorithm used for classification and regression tasks.

T - Time Series Analysis: A statistical technique used to analyze and forecast time-dependent data.

U - Unsupervised Learning: A type of machine learning where the model learns patterns and relationships in data without labeled outputs.

V - Validation Set: A subset of data used to evaluate the performance of a model during training.

W - Web Scraping: The process of extracting data from websites for analysis and visualization.

X - XGBoost: An optimized gradient boosting algorithm that is widely used in machine learning competitions.

Y - Yield Curve Analysis: The study of the relationship between interest rates and the maturity of fixed-income securities.

Z - Z-Score: A standardized score that represents the number of standard deviations a data point is from the mean.

Credits: https://news.1rj.ru/str/free4unow_backup

Like if you need similar content 😄👍
3👍3
Real-world Data Science projects ideas: 💡📈

1. Credit Card Fraud Detection

📍 Tools: Python (Pandas, Scikit-learn)

Use a real credit card transactions dataset to detect fraudulent activity using classification models.

Skills you build: Data preprocessing, class imbalance handling, logistic regression, confusion matrix, model evaluation.

2. Predictive Housing Price Model

📍 Tools: Python (Scikit-learn, XGBoost)

Build a regression model to predict house prices based on various features like size, location, and amenities.

Skills you build: Feature engineering, EDA, regression algorithms, RMSE evaluation.


3. Sentiment Analysis on Tweets or Reviews

📍 Tools: Python (NLTK / TextBlob / Hugging Face)

Analyze customer reviews or Twitter data to classify sentiment as positive, negative, or neutral.

Skills you build: Text preprocessing, NLP basics, vectorization (TF-IDF), classification.


4. Stock Price Prediction

📍 Tools: Python (LSTM / Prophet / ARIMA)

Use time series models to predict future stock prices based on historical data.

Skills you build: Time series forecasting, data visualization, recurrent neural networks, trend/seasonality analysis.


5. Image Classification with CNN

📍 Tools: Python (TensorFlow / PyTorch)

Train a Convolutional Neural Network to classify images (e.g., cats vs dogs, handwritten digits).

Skills you build: Deep learning, image preprocessing, CNN layers, model tuning.


6. Customer Segmentation with Clustering

📍 Tools: Python (K-Means, PCA)

Use unsupervised learning to group customers based on purchasing behavior.

Skills you build: Clustering, dimensionality reduction, data visualization, customer profiling.


7. Recommendation System

📍 Tools: Python (Surprise / Scikit-learn / Pandas)

Build a recommender system (e.g., movies, products) using collaborative or content-based filtering.

Skills you build: Similarity metrics, matrix factorization, cold start problem, evaluation (RMSE, MAE).


👉 Pick 2–3 projects aligned with your interests.
👉 Document everything on GitHub, and post about your learnings on LinkedIn.

Here you can find the project datasets: https://whatsapp.com/channel/0029VbAbnvPLSmbeFYNdNA29

React ❤️ for more
3