Data Science | Machinelearning [ru] – Telegram
Data Science | Machinelearning [ru]
20.1K subscribers
629 photos
39 videos
29 files
3.52K links
Все о Data Science, машинном обучении и искусственном интеллекте: от базовой теории до cutting-edge исследований и LLM.

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
Язык R, не смотря на своё узкое назначение, входит в топ 10 наиболее популярных языков программирования согласно различным рейтингам, включая TIOBE. А для анализа данных R является чуть ли не стандартом отрасли и является достойным соперником Python.

Хочу порекомендовать канал @R4marketing. Автором которого является Алексей Селезнёв, руководитель отдела аналитики в Netpeak.

Канал посвящён языку R. На данный момент там собрано огромное количество русскоязычных материалов по изучения R:

- Статьи
- Видео уроки
- Вебинары и доклады с конференций
- Заметки по R
- Книги
- Бесплатные онлайн курсы
- Новости и релизы из мира R

В канале опубликовано более 500 ссылок на русскоязычные материалы по R.

Кому интересно - подписывайтесь!

https://news.1rj.ru/str/R4marketing
🧠Виды нейронных сетей.👾

Новые виды архитектуры нейронных сетей появляются постоянно, и в них можно запутаться. Мы собрали для вас своеобразную шпаргалку, содержащую большую часть существующих видов ИНС. Хотя все они представлены как уникальные, картинки свидетельствуют о том, что многие из них очень похожи.

https://telegra.ph/Tipy-nejronnyh-setej-03-03
​​Чем искусственный интеллект отличается от машинного обучения?

*AI* Искусственный интеллект нацелен на создание художественной компьютерной системы, подобной людям, для решения сложных проблем.

*ML* позволяет машинам учиться на данных, чтобы они могли выдавать точный результат

*AI* В зависимости от возможностей ИИ можно разделить на 3 типа. Слабый ИИ, Общий ИИ и сильный ИИ.

*ML* ML делится на 3 типа: обучение с учителем, обучение без учителя и обучение с подкреплением.

*AI* Системы искусственного интеллекта заинтересованы в максимальном увеличении шкалы успеха.

*ML* Машинное обучение в основном связано с точностью и закономерностями.

*AI* ИИ позволяет машине имитировать поведение человека.

*ML* Машинное обучение - это разновидность искусственного интеллекта

*AI* В основном имеет дело со структурированными полуструктурированными и неструктурированными данными.

*ML* ML работает со структурированными и полуструктурированными данными.

*AI* Применение ИИ - это Siri, поддержка клиентов с помощью кэтботов, интеллектуальных гуманоидных роботов и т. Д.

*ML* Применением машинного обучения являются системы рекомендаций, алгоритмы поиска, предложения автоматической пометки друзей в Facebook и т. Д.
💡Обучение нейросети с учителем, без учителя, с подкреплением — в чем отличие? Какой алгоритм лучше?🚀

Обучить нейронную сеть можно разными способами: с учителем, без учителя, с подкреплением. Но как выбрать оптимальный алгоритм и чем они отличаются? Есть несколько способов собрать мебель из IKEA. Каждый из них приводит к собранному дивану или стулу. Но в зависимости от предмета мебели и его составляющих один способ будет более разумным, чем другие.
Есть руководство по эксплуатации и все нужные детали? Просто следуйте инструкции. Ну как, получается? Можно выбросить руководство и работать самостоятельно. Но стоит перепутать порядок действий, и уже вам решать, что делать с этой кучей деревянных болтов и досок.
Все то же самое с глубоким обучением (deep learning). Разработчик предпочтет алгоритм с конкретным способом обучения, учитывая вид данных и стоящую перед ним задачу.

https://telegra.ph/Obuchenie-nejroseti-s-uchitelem-bez-uchitelya-s-podkrepleniem--v-chem-otlichie-Kakoj-algoritm-luchshe-03-05
🖥️Распознавание объектов на Python / Глубокое машинное обучение📊

Python является одним из самых перспективных языков, позволяющий воплощать искусственный интеллект в жизнь. В уроке мы создадим распознавание объектов при помощи Python и ImageAI.

Одна из самых перспективных наук о компьютерах и программах – компьютерное зрение. Его смысл заключается в способности ПК к распознанию и определению сути картинки. Это важнейшая область в искусственном интеллекте, включающая сразу несколько действий: распознание содержимого фотографии, определение предмета и его классификация или генерация. Поиск объектов на картинке, скорее всего, является важнейшей областью компьютерного зрения.

https://telegra.ph/Raspoznavanie-obektov-na-Python--Glubokoe-mashinnoe-obuchenie-03-06
🧠Типы графиков в matplotlib / plt 3📊

Поскольку визуализация — основная цель библиотеки, то этот раздел является очень важным. Умение выбрать правильный тип графика является фундаментальным навыком, ведь неправильная репрезентация может привести к тому, что данные, полученные в результате качественного анализа данных, будет интерпретированы неверно.

https://telegra.ph/Tipy-grafikov-v-matplotlib--plt-3-03-07
Мир IT и не только поглощен обработкой беспредельного количества данных. Будь то социальные сети или научная информация — везде требуются инструменты, значительно превышающие по возможностям устаревшие программы, вроде Excel. Требуются принципиально иные подходы и совершенные алгоритмы для их реализации. Вот 9 языков, с помощью которых работа с Big Data доставит вам чуть меньше головной боли.

https://telegra.ph/9-yazykov-dlya-Big-Data-03-08
Получи ультрасовременное образование из любой точки мира! Четырехлетняя программа бакалавриата по аналитике данных и машинному обучению это:
→ дистанционное образование за 4 года;
→ портфолио, стажировки и трудоустройство;
→ возможность получить 2 диплома;
→ отсрочка от армии.

Специалисты Data Science & Machine Learning находят закономерности в данных и делают выводы. Например, какой способ производства на предприятии тратит меньше энергии, какие товары компании самые популярные или когда в экономике может случиться дефолт. А также создают алгоритмы обучаемого искусственного интеллекта для нейросетей, голосовых помощников, программ распознавания лиц и чат-ботов.

Вот, в каких сферах ты сможешь работать после окончания вуза:
→ Разработка игр.
→ Информационные технологии.
→ Медицина.
→ Финансы.

Получи больше информации, переходи по ссылке: https://clc.am/jv1anA
Технология FPGA для искусственного интеллекта.

Трудно представить другую технологию, которая настолько разносторонняя как FPGA.
FPGA — Field-Programmable Gate Array, то есть программируемая логическая матрица (ПЛМ), программируемая логическая интегральная схема (ПЛИС). Это технология, при которой создается микросхема с набором логических элементов, триггеров, иногда оперативной памяти и программируемых электрических связей между ними. При этом программирование FPGA оказывается похоже на разработку электрической схемы, а не программы. Пользуюсь данной технологией давно и попробую описать самые полезные с моей точки зрения применения по мере их усложнения.

Cферы применения решений FPGA + AI и Преимущества FPGA для искусственного интеллекта.
https://telegra.ph/Cfery-primeneniya-reshenij-FPGA--AI-03-09
Невероятно, но факт: язык программирования Python нужен не только для веб-разработки, программ или видеоигр. Он хорошо помогает и в бизнесе. И если вы думаете, что кодить это сложно и не для вас — значит, вы еще не учились на курсе Python для решения бизнес-задач от GeekBrains.

Курс подходит для всех, кто не знаком с программированием, но решает задачи бизнеса и хочет делать это в три раза быстрее.
Продакт-менеджеры, маркетологи, собственники бизнеса да и вообще любые ценители своего времени — если вы работаете с аналитикой, делаете имейл-рассылку, обрабатываете файлы или занимаетесь рутинными задачами, то это обучение как раз для вас.
Один раз напишете программу — и забудете ручную обработку данных как страшный сон.

Хотите знать больше? Переходите по ссылке → https://geekbrains.ru/link/OEQ6N5
Алгоритмы машинного обучения и их типы

Термины «Машинное обучение» и «Искусственный интеллект» часто путают между собой. На самом деле, машинное обучение входит в область искусственного интеллекта. Ещё машинное обучение порой путают с прогнозной аналитикой (или предсказательным моделированием). И опять, машинное обучение может использоваться для предсказательного моделирования, но это всего лишь один из видов предиктивной аналитики, и его применение шире, чем предсказательное моделирование.
https://telegra.ph/Algoritmy-mashinnogo-obucheniya-i-ih-tipy-03-10
Хорошие новости, друзья!

16 марта NewProLab - ведущий провайдер курсов в сфере data science - запускает 12-недельный курс "Специалист по большим данным".

Эту программу уже прошли более 300 дата аналитиков и разработчиков, в их числе CDO ведущих компаний.
👉🏻Успейте подать заявку: https://clck.ru/TayKh

Без преувеличения - это самая хардкорная и глубокая программа на рынке Big Data. Вас ждет 36 практических занятий, 10 лаб, подготовка 2 собственных проектов и всё это на реальных дата-сетах и живых кейсах от команды преподавателей-практиков.

Вы научитесь строить модели машинного обучения, писать MapReduce-джобы, используя Hadoop Streaming и Python, готовить SQL-like запросы в Hive, работать с данными на HDFS, проводить анализ при помощи Apache Spark, а также строить алгоритмы рекомендательных систем.

P.S. Нужно подтянуть отдельный модуль? Программу можно пройти частями. Оставляйте заявку.
10 примеров, как искусственный интеллект может изменить ваш образ жизни
Искусственный интеллект в последнее время привлекает все больше внимания, и, если верить Биллу Гейтсу, из всех современных инноваций именно эта имеет наибольший потенциал изменить нашу жизнь сделать ее «более продуктивной, эффективной и вообще легкой».
https://telegra.ph/10-primerov-kak-iskusstvennyj-intellekt-mozhet-izmenit-vash-obraz-zhizni-03-11
3 апреля состоится Yandex.Taxi Data Driven

Это бесплатный митап для всех практикующих дата-аналитиков, сайентистов и просто разработчиков. В этом году он пройдет в онлайне по приглашениям.

С 11 утра до 5 вечера аналитики Яндекс Go будут делиться опытом на примере реальных кейсов, неудачами и успехами. После докладов будет секция воркшопов, где участникам предлагается вместе поштурмить над интересными и сложными проблемами бизнеса, продукта и аналитики.

На митапе можно получить не только актуальный опыт со всеми «граблями» на практике, но и влиться в комьюнити data-аналитики и проявить себя. И может даже попасть в Яндекс.

Регистрация с небольшим отборочным заданием, а это значит, что на встрече не будет «случайных» людей. Подробнее вот тут — https://taxi.yandex.ru/action/ytdd.
​​Топ 5 ресурсов для изучения математики для DataScience

1. KhanAcademy
[https://ru.khanacademy.org/]

2. Coursera
[https://www.coursera.org/]

3. StatQuest (Youtube)
[https://www.youtube.com/user/joshstarmer]

4. Introduction to Algebra
[https://www.khanacademy.org/math/algebra-home/alg-intro-to-algebra]
Обучаете нейронки и работаете с Big Data?
Тогда у Яндекса для вас есть DataSphere — новая облачная среда для ML-разработки и анализа данных

🔥Почему ее стоит попробовать:

Не нужно торопиться из-за временных ограничений, ноутбуки там никуда не пропадают.
💸 Стартовый грант на 3 000 ₽ каждому новому пользователю. Его хватит, например, на 50+ часов вычислений с GPU.
🧾 Когда грант закончится — Pay as you Go — платите только за вычисления.
🖥 Отлично знакомый многим из нас интерфейс Jupyter Notebook и документация на русском.
☁️ Бессерверные технологии, благодаря которым ML становится значительно дешевле всего, что было раньше.
Есть NVIDIA V100 в конфигурациях с одной и четырьмя картами, и можно бесшовно переключаться c CPU на GPU без потери прогресса.

В DataSphere можно работать одному и в командах, использовать для работы, учебы и личных проектов!

👉Начните бесплатно по ссылке: https://clck.ru/TiZ6g

Любые вопросы задавайте ребятам в официальном чате DataSphere — продуктовая команда проекта оперативно там отвечает: https://news.1rj.ru/str/yandex_datasphere
5 лучших библиотек машинного обучения

За последние несколько лет рост машинного обучения достиг стремительных темпов. Это связано с выпуском библиотек машинного обучения (МО)/глубокого обучения (ГО), которые абстрагируются от сложности скаффолдинга или реализации модели МО/ГО.https://telegra.ph/5-luchshih-bibliotek-mashinnogo-obucheniya-03-15
​​Диаграммы рассеяния

Диаграмма рассеяния лучше всего подходит для визуализации связи между двумя
спаренными множествами данных. Например, показана связь между
числом друзей пользователя и числом минут, которые они проводят на веб-сайте
каждый день:
friends = [ 70, 65, 72, 63, 71, 64, 60, 64, 67)
minutes = [175, 170, 205, 120, 220, 130, 105, 145, 190)
labels = ['а', ·ь·, 'с', 'd', 'е', 'f'' 'g'' 'h', 'i']
# Друзья
# Минуты
# Метки
plt.scatter(friends, minutes)
# Назначить метку для каждой точки
for label, friend_count, minute_count in zip(labels, friends, minutes):
plt.annotate(label,
xy=(friend_count, minute_count), # Задать метку
xytext=(5, -5), # и немного сместить ее
textcoords='offset points')
plt.noscript("Чиcлo минут против числа друзей")
pl t. xlabel ( "Число друзей")
plt.ylabel("Чиcлo минут, проводимых на сайте ежедневно")
plt.show ()
Интенсивный курс Deep Learning от Newprolab для обучения работе с глубокими нейронными сетями на реальных датасетах в контексте боевых бизнес-задач.

🔥Старт 29 марта, задать вопросы и зарегистрироваться на программу можно тут: https://clck.ru/ThHAR

Что в программе?
Два блока: компьютерное зрение и Natural Language Processing. Научитесь предобрабатывать и классифицировать изображения, а также генерировать и классифицировать тексты с применением самых современных архитектур.

8 практических занятий, 2 проекта и туториал по разметке данных. Курс предназначен строго для дата сайентистов, ML-инженеров и менеджеров продукта, уже имеющих опыт машинного обучения. Обратная связь, живое общение, обмен опытом и рост в кругу коллег прилагается!

💡Специальная скидка 7% от цены на сайте по промокоду Devsp. Присоединяйтесь!