Интенсивный курс Deep Learning от Newprolab для обучения работе с глубокими нейронными сетями на реальных датасетах в контексте боевых бизнес-задач.
🔥Старт 29 марта, задать вопросы и зарегистрироваться на программу можно тут: https://clck.ru/ThHAR
Что в программе?
Два блока: компьютерное зрение и Natural Language Processing. Научитесь предобрабатывать и классифицировать изображения, а также генерировать и классифицировать тексты с применением самых современных архитектур.
8 практических занятий, 2 проекта и туториал по разметке данных. Курс предназначен строго для дата сайентистов, ML-инженеров и менеджеров продукта, уже имеющих опыт машинного обучения. Обратная связь, живое общение, обмен опытом и рост в кругу коллег прилагается!
💡Специальная скидка 7% от цены на сайте по промокоду Devsp. Присоединяйтесь!
🔥Старт 29 марта, задать вопросы и зарегистрироваться на программу можно тут: https://clck.ru/ThHAR
Что в программе?
Два блока: компьютерное зрение и Natural Language Processing. Научитесь предобрабатывать и классифицировать изображения, а также генерировать и классифицировать тексты с применением самых современных архитектур.
8 практических занятий, 2 проекта и туториал по разметке данных. Курс предназначен строго для дата сайентистов, ML-инженеров и менеджеров продукта, уже имеющих опыт машинного обучения. Обратная связь, живое общение, обмен опытом и рост в кругу коллег прилагается!
💡Специальная скидка 7% от цены на сайте по промокоду Devsp. Присоединяйтесь!
Построение графиков в Python при помощи Matplotlib
Картиной можно выразить тысячу слов. В случае с библиотекой Python matplotlib, к счастью, понадобится намного меньше слов в коде для создания качественных графиков.
https://telegra.ph/Postroenie-grafikov-v-Python-pri-pomoshchi-Matplotlib-03-17
Картиной можно выразить тысячу слов. В случае с библиотекой Python matplotlib, к счастью, понадобится намного меньше слов в коде для создания качественных графиков.
https://telegra.ph/Postroenie-grafikov-v-Python-pri-pomoshchi-Matplotlib-03-17
Telegraph
Построение графиков в Python при помощи Matplotlib
артиной можно выразить тысячу слов. В случае с библиотекой Python matplotlib, к счастью, понадобится намного меньше слов в коде для создания качественных графиков.Однако, matplotlib это еще и массивная библиотека, и создание графика, который будет выглядеть…
Как устроены камеры с искусственным интеллектом
В каждой умной камере есть встроенная видеоаналитика, сегодня чаще всего здесь используются нейросети глубокого обучения или искусственный интеллект. Это стало возможным благодаря увеличению мощности процессоров видеокамер, раньше видеоаналитика могла существовать только на серверах.
https://telegra.ph/Kak-ustroeny-kamery-s-iskusstvennym-intellektom-03-18
В каждой умной камере есть встроенная видеоаналитика, сегодня чаще всего здесь используются нейросети глубокого обучения или искусственный интеллект. Это стало возможным благодаря увеличению мощности процессоров видеокамер, раньше видеоаналитика могла существовать только на серверах.
https://telegra.ph/Kak-ustroeny-kamery-s-iskusstvennym-intellektom-03-18
Telegraph
Как устроены камеры с искусственным интеллектом
Процессоры умных камер Современный процессор должен иметь возможность запускать нейросетевую видеоаналитику. В сравнении с обычными процессоры умных камер чаще всего имеют улучшенный графический (GPU, Graphics Processing Unit) чипсет, который дает больше…
Разбираем, чем отличается версионирование в ML-разработке по коду от версионирования по коду и состоянию.
Ситуация: вы работаете над проектом, например занимаетесь ML-прототипированием или анализом данных. По ходу работы в системе сохраняется код, и вы спокойно продолжаете, не боясь что-то упустить из виду. Но в конце недели понимаете, что где-то свернули не туда. Вы откатываетесь на несколько шагов назад по коду, и все бы ничего, но вычисления ведь придется делать заново. Это главный недостаток версионирования по коду.
Версионирование по коду и состоянию отличается тем, что во время работы сохраняется не только сам код, но и состояние вычислений. То есть состояние = код + вывод + переменные. Это значит, что если вы откатитесь назад, то получите не только прежний код, но и значения переменных. Вам не придется заново запускать вычисления, терять время и ресурсы.
Попробуйте версионирование по коду и состоянию в Yandex DataSphere, где каждому новому пользователю доступны бесплатные ресурсы на ML-разработку:
👉 https://clck.ru/ToJNp
Ситуация: вы работаете над проектом, например занимаетесь ML-прототипированием или анализом данных. По ходу работы в системе сохраняется код, и вы спокойно продолжаете, не боясь что-то упустить из виду. Но в конце недели понимаете, что где-то свернули не туда. Вы откатываетесь на несколько шагов назад по коду, и все бы ничего, но вычисления ведь придется делать заново. Это главный недостаток версионирования по коду.
Версионирование по коду и состоянию отличается тем, что во время работы сохраняется не только сам код, но и состояние вычислений. То есть состояние = код + вывод + переменные. Это значит, что если вы откатитесь назад, то получите не только прежний код, но и значения переменных. Вам не придется заново запускать вычисления, терять время и ресурсы.
Попробуйте версионирование по коду и состоянию в Yandex DataSphere, где каждому новому пользователю доступны бесплатные ресурсы на ML-разработку:
👉 https://clck.ru/ToJNp
cloud.yandex.ru
Машинное обучение и анализ данных – Yandex DataSphere
Сервис машинного обучения DataSphere – это полный цикл разработки, анализа данных и создания моделей машинного обучения. Вам доступны привычные инструменты Jupyter Notebook и динамически масштабируемые ресурсы облака.
Участие искусственного интеллекта в современном трейдинге
Профессиональные трейдеры периодически вынуждены модернизировать свои наработки, так как прогресс делает трейдинг сложнее. В 2000–2015 гг. им пришлось конкурировать с торговыми ботами, а потом научиться настраивать их, чтобы силы уравнялись. Примерно с 2015 года трейдерам и их ботам приходится конкурировать уже с искусственным интеллектом.
https://telegra.ph/Uchastie-iskusstvennogo-intellekta-v-sovremennom-trejdinge-03-19
Профессиональные трейдеры периодически вынуждены модернизировать свои наработки, так как прогресс делает трейдинг сложнее. В 2000–2015 гг. им пришлось конкурировать с торговыми ботами, а потом научиться настраивать их, чтобы силы уравнялись. Примерно с 2015 года трейдерам и их ботам приходится конкурировать уже с искусственным интеллектом.
https://telegra.ph/Uchastie-iskusstvennogo-intellekta-v-sovremennom-trejdinge-03-19
Telegraph
Участие искусственного интеллекта в современном трейдинге
Профессиональные трейдеры периодически вынуждены модернизировать свои наработки, так как прогресс делает трейдинг сложнее. В 2000–2015 гг. им пришлось конкурировать с торговыми ботами, а потом научиться настраивать их, чтобы силы уравнялись. Примерно с 2015…
5 лучших библиотек Python для визуализации данных
https://telegra.ph/5-luchshih-bibliotek-Python-dlya-vizualizacii-dannyh-03-20
https://telegra.ph/5-luchshih-bibliotek-Python-dlya-vizualizacii-dannyh-03-20
Telegraph
5 лучших библиотек Python для визуализации данных
5 лучших библиотек Python для визуализации данных 1. Matplotlib Matplotlib - самая популярная библиотека Python для визуализации данных. Ее можно использовать в оболочках Python и IPython, скриптах Python, серверах веб-приложений и т.д. Это библиотека для…
Найти и обезвредить: как Big Data и Machine Learning сканируют ваши соцсети для предупреждения преступлений
https://telegra.ph/Najti-i-obezvredit-kak-Big-Data-i-Machine-Learning-skaniruyut-vashi-socseti-dlya-preduprezhdeniya-prestuplenij-03-21
https://telegra.ph/Najti-i-obezvredit-kak-Big-Data-i-Machine-Learning-skaniruyut-vashi-socseti-dlya-preduprezhdeniya-prestuplenij-03-21
Telegraph
Найти и обезвредить: как Big Data и Machine Learning сканируют ваши соцсети для предупреждения преступлений
Machine Learning против Колумбайна и буллинга в соцсетях В 2018 и 2019 годах по России прокатилась волна массовых убийств в образовательных организациях. Несчастья случились в Керче, Перми и Вольске, где пара школьников напала на своих одноклассников и учителей…
Big Data: что это такое, как искать, хранить и использовать
В этой статье разберемся, что считается Big Data, а что нет, как эту информацию хранить, обрабатывать и получать пользу.
https://telegra.ph/Big-Data-chto-ehto-takoe-kak-iskat-hranit-i-ispolzovat-03-22
В этой статье разберемся, что считается Big Data, а что нет, как эту информацию хранить, обрабатывать и получать пользу.
https://telegra.ph/Big-Data-chto-ehto-takoe-kak-iskat-hranit-i-ispolzovat-03-22
Telegraph
Big Data: что это такое, как искать, хранить и использовать
Определение Big Data Это Петабайты (и больше) сложной и необработанной информации, которая постоянно обновляется. Например, данные IoT-датчиков с промышленного оборудования на заводах, записи транзакций клиентов банка или поисковых запросов с разных устройств.…
Описание одиночного набора данных
Факты - упрямая вещь, а статистика гораздо сговорчивее.
-Марк Твен
Благодаря полезному сочетанию живого слова и удачи социальная сеть DataSciencester
выросла до нескольких десятков пользователей, и директор по привлечению фи
нансовых ресурсов просит вас проанализировать, сколько друзей есть у пользова
телей сети, чтобы он мог включить эти данные в свои "презентации для лифта" 2•
Используя простые методы из главы 1, вы легко можете предъявить запрашивае
мые данные. Однако сейчас вы столкнулись с задачей выполнения их описательно
го аншlИза.
Любой набор данных очевидным образом характеризует сам себя:
Для достаточно малого набора данных такое описание может даже оказаться наи
лучшим. Но для более крупного набора данных это будет выглядеть очень громоздко и, скорее всего, непрозрачно.
https://telegra.ph/Opisanie-odinochnogo-nabora-dannyh-03-23
Факты - упрямая вещь, а статистика гораздо сговорчивее.
-Марк Твен
Благодаря полезному сочетанию живого слова и удачи социальная сеть DataSciencester
выросла до нескольких десятков пользователей, и директор по привлечению фи
нансовых ресурсов просит вас проанализировать, сколько друзей есть у пользова
телей сети, чтобы он мог включить эти данные в свои "презентации для лифта" 2•
Используя простые методы из главы 1, вы легко можете предъявить запрашивае
мые данные. Однако сейчас вы столкнулись с задачей выполнения их описательно
го аншlИза.
Любой набор данных очевидным образом характеризует сам себя:
# Число друзейnurn friends[100, 49, 41, 40, 25,# ... и еще много других]Для достаточно малого набора данных такое описание может даже оказаться наи
лучшим. Но для более крупного набора данных это будет выглядеть очень громоздко и, скорее всего, непрозрачно.
https://telegra.ph/Opisanie-odinochnogo-nabora-dannyh-03-23
🔥Большой гайд по библиотеке pandas: анализ данных на Python
https://telegra.ph/Vvedenie-v-pandas-analiz-dannyh-na-Python-03-24
https://telegra.ph/Vvedenie-v-pandas-analiz-dannyh-na-Python-03-24
Telegraph
Введение в pandas: анализ данных на Python
pandas это высокоуровневая Python библиотека для анализа данных. Почему я её называю высокоуровневой, потому что построена она поверх более низкоуровневой библиотеки NumPy (написана на Си), что является большим плюсом в производительности. В экосистеме Python…
Что читать специалисту по Data Science в 2021 году
В этом посте делимся с вами подборкой источников полезной информации о Data Science от сооснователя и CTO DAGsHub — сообщества и веб-платформы для контроля версий данных и совместной работы дата-сайентистов и инженеров по машинному обучению. В подборку попали самые разные источники, от аккаунтов в твиттере, до полноценных инженерных блогов, которые ориентированы для тех, кто точно знает, что ищет. Подробности под катом.
В этом посте делимся с вами подборкой источников полезной информации о Data Science от сооснователя и CTO DAGsHub — сообщества и веб-платформы для контроля версий данных и совместной работы дата-сайентистов и инженеров по машинному обучению. В подборку попали самые разные источники, от аккаунтов в твиттере, до полноценных инженерных блогов, которые ориентированы для тех, кто точно знает, что ищет. Подробности под катом.
Telegraph
Что читать специалисту по Data Science в 2021 году
Two Minute Papers YouTube-канал, который хорошо подходит, для того чтобы быть в курсе последних событий. Канал часто обновляется, а ведущий обладает заразительным энтузиазмом и позитивом во всех освещаемых темах. Ожидайте освещения интересных работ не только…
Мы много говорим о понятии data science , даже канал называется так, но многие всё еще путают данную науку с узкими отраслями IT сферы. Чтобы наши подписчики больше не путали данное понятие мы дадим понятное объяснени где и как используют data science.
- Обнаружение аномалий, например, ненормальное поведение клиента, мошенничества;
персонализированный маркетинг — электронные рассылки, ретаргетинг, системы рекомендаций;
- Количественные прогнозы — показатели эффективности, качество рекламных кампаний и других мероприятий;
- Cкоринговые системы — обработка больших объёмов данных, помощь в принятии решений, например, о предоставлении кредита;
- Базовое взаимодействие с клиентом — стандартные ответы в чатах, голосовые помощники, сортировка писем по папкам.
Пять основных этапов в работе с данными
Сбор. Поиск каналов, где можно собирать данные, и выбор методов их получения.
Проверка. Валидация, нивелирование аномалий, которые не влияют на результат и мешают дальнейшему анализу.
Анализ. Изучение данных, подтверждение предположений.
Визуализация. Представление информации в понятном для восприятия виде: графики, диа
граммы.
Реакция. Принятие решений на основе данных. Например, изменение маркетинговой стратегии, увеличение бюджета компании.
- Обнаружение аномалий, например, ненормальное поведение клиента, мошенничества;
персонализированный маркетинг — электронные рассылки, ретаргетинг, системы рекомендаций;
- Количественные прогнозы — показатели эффективности, качество рекламных кампаний и других мероприятий;
- Cкоринговые системы — обработка больших объёмов данных, помощь в принятии решений, например, о предоставлении кредита;
- Базовое взаимодействие с клиентом — стандартные ответы в чатах, голосовые помощники, сортировка писем по папкам.
Пять основных этапов в работе с данными
Сбор. Поиск каналов, где можно собирать данные, и выбор методов их получения.
Проверка. Валидация, нивелирование аномалий, которые не влияют на результат и мешают дальнейшему анализу.
Анализ. Изучение данных, подтверждение предположений.
Визуализация. Представление информации в понятном для восприятия виде: графики, диа
граммы.
Реакция. Принятие решений на основе данных. Например, изменение маркетинговой стратегии, увеличение бюджета компании.
Сколько зарабатывает дата-сайентист: обзор зарплат и вакансий в 2021
https://telegra.ph/Skolko-zarabatyvaet-data-sajentist-obzor-zarplat-i-vakansij-v-2021-03-27
https://telegra.ph/Skolko-zarabatyvaet-data-sajentist-obzor-zarplat-i-vakansij-v-2021-03-27
Telegraph
Сколько зарабатывает дата-сайентист: обзор зарплат и вакансий в 2021
Дата-сайентист — одна из самых быстрорастущих специальностей XXI века. По прогнозам компании Frost & Sullivan, рынок аналитики больших данных в ближайшие 10 лет будет расти в среднем на 35,9 % в год. В этой статье мы рассмотрим, сколько денег может получать…
Тонкая настройка предварительно обученных трансформаторов в RNN
Microsoft + Deepmind + ...
Трансформеры - это текущая СОТА в языковом моделировании. Но они сопряжены со значительными вычислительными затратами, поскольку механизм внимания квадратично масштабируется по длине последовательности. Потребление памяти также линейно растет с увеличением длины последовательности. Это узкое место ограничивает использование крупномасштабных предварительно обученных моделей генерации, таких как GPT-3 или преобразователи изображений.
Недавно было предложено несколько эффективных вариантов трансформатора. Например, рекуррентный вариант линейной сложности (https://arxiv.org/abs/2006.16236) оказался хорошо подходящим для генерации авторегрессии. Он аппроксимирует внимание softmax с помощью рандомизированных или эвристических карт характеристик, но может быть трудно обучить или получить неоптимальную точность.
Эта работа преобразует предварительно обученный преобразователь в его эффективный рекуррентный аналог линейной сложности с изученной картой функций для повышения эффективности при сохранении точности. Для этого они заменяют softmax Внимание в готовом предварительно обученном трансформаторе на его рекуррентную альтернативу линейной сложности, а затем тонкую настройку.
➕ Плюсы:
+ Процесс точной настройки требует гораздо меньше времени графического процессора, чем обучение повторяющихся вариантов с нуля
+ Преобразование большого стандартного трансформатора в облегченную модель вывода без повторения всей процедуры обучения очень удобно во многих последующих приложениях.
Microsoft + Deepmind + ...
Трансформеры - это текущая СОТА в языковом моделировании. Но они сопряжены со значительными вычислительными затратами, поскольку механизм внимания квадратично масштабируется по длине последовательности. Потребление памяти также линейно растет с увеличением длины последовательности. Это узкое место ограничивает использование крупномасштабных предварительно обученных моделей генерации, таких как GPT-3 или преобразователи изображений.
Недавно было предложено несколько эффективных вариантов трансформатора. Например, рекуррентный вариант линейной сложности (https://arxiv.org/abs/2006.16236) оказался хорошо подходящим для генерации авторегрессии. Он аппроксимирует внимание softmax с помощью рандомизированных или эвристических карт характеристик, но может быть трудно обучить или получить неоптимальную точность.
Эта работа преобразует предварительно обученный преобразователь в его эффективный рекуррентный аналог линейной сложности с изученной картой функций для повышения эффективности при сохранении точности. Для этого они заменяют softmax Внимание в готовом предварительно обученном трансформаторе на его рекуррентную альтернативу линейной сложности, а затем тонкую настройку.
➕ Плюсы:
+ Процесс точной настройки требует гораздо меньше времени графического процессора, чем обучение повторяющихся вариантов с нуля
+ Преобразование большого стандартного трансформатора в облегченную модель вывода без повторения всей процедуры обучения очень удобно во многих последующих приложениях.
Формула успеха: как стать востребованным экспертом по интеллектуальной обработке данных.
https://telegra.ph/Formula-uspeha-kak-stat-vostrebovannym-ehkspertom-po-intellektualnoj-obrabotke-dannyh-03-29
https://telegra.ph/Formula-uspeha-kak-stat-vostrebovannym-ehkspertom-po-intellektualnoj-obrabotke-dannyh-03-29
Telegraph
Формула успеха: как стать востребованным экспертом по интеллектуальной обработке данных
Потребность работодателей в IT-кадрах с техническим образованием постоянно растёт и опережает рынок труда на протяжении последних лет. За два года значительно вырос спрос на специалистов по интеллектуальной обработке данных (Data Science, рост на 234 %).…
Интервью с Data Scientist: «Я вижу, как моя работа влияет на жизнь людей»
https://iot.ru/gadzhety/intervyu-s-data-scientist-ya-vizhu-kak-moya-rabota-vliyaet-na-zhizn-lyudey
https://iot.ru/gadzhety/intervyu-s-data-scientist-ya-vizhu-kak-moya-rabota-vliyaet-na-zhizn-lyudey
Kак появилась Data Science и при чем тут большие данные?
От Википедии : " Data Science – это наука о данных, объединяющая разные области знаний: информатику, математику и системный анализ. Сюда входят методы обработки больших данных (Big Data), интеллектуального анализа данных (Data Mining), статистические методы, методы искусственного интеллекта, в т.ч машинное обучение (Machine Learning). DS включает методы проектирования и разработки баз данных и прикладного программного обеспечения "
А подробнее про тему читайте по этой ссылке.
От Википедии : " Data Science – это наука о данных, объединяющая разные области знаний: информатику, математику и системный анализ. Сюда входят методы обработки больших данных (Big Data), интеллектуального анализа данных (Data Mining), статистические методы, методы искусственного интеллекта, в т.ч машинное обучение (Machine Learning). DS включает методы проектирования и разработки баз данных и прикладного программного обеспечения "
А подробнее про тему читайте по этой ссылке.
Курсы Trino, ClickHouse, Airflow, Kafka, МL и ИИ Обучение
Big Data
Узнайте, что такое большие данные и как их использование может улучшить бизнес-процессы и аналитические функции.
na centre - чатбот, который поможет найти работу и оставаться в курсе карьерных возможностей.
Чатбот позволяет получать интересные вакансии в одном месте, а не просматривать много телеграм-каналов, сайтов)
@na_centre_bot поможет оставаться в курсе интересных вам вакансий с помощью настроек подписки по:
- сфере деятельности
- уровню зарплаты
- локации (и по другим в будущем).
Собирает вакансии из 100+ источников, постепенно список источников пополняется, добавляют персонализацию.
Попробовать - @na_centre_bot 🚀
Чатбот позволяет получать интересные вакансии в одном месте, а не просматривать много телеграм-каналов, сайтов)
@na_centre_bot поможет оставаться в курсе интересных вам вакансий с помощью настроек подписки по:
- сфере деятельности
- уровню зарплаты
- локации (и по другим в будущем).
Собирает вакансии из 100+ источников, постепенно список источников пополняется, добавляют персонализацию.
Попробовать - @na_centre_bot 🚀
Telegram
na centre
Получай интересные тебе вакансии в одном месте 🔥
Get relevant job opportunities in one place 🔥
Contact - @mr_nrs
Get relevant job opportunities in one place 🔥
Contact - @mr_nrs
10 трюков библиотеки Python Pandas, которые вам нужны
Любите панд? Мы тоже. А еще мы любим эффективный код, поэтому собрали классные трюки, которые облегчат работу с библиотекой Python Pandas.
https://proglib.io/p/pandas-tricks
Любите панд? Мы тоже. А еще мы любим эффективный код, поэтому собрали классные трюки, которые облегчат работу с библиотекой Python Pandas.
https://proglib.io/p/pandas-tricks
Библиотека программиста
10 трюков библиотеки Python Pandas, которые вам нужны
Любите панд? Мы тоже. А еще мы любим эффективный код, поэтому собрали классные трюки, которые облегчат работу с библиотекой Python Pandas.
Когда data science была представлена , как отдельная дисциплина в науке?
Anonymous Quiz
25%
1967
55%
1988
14%
1966
5%
1904