Data Science | Machinelearning [ru] – Telegram
Data Science | Machinelearning [ru]
20.1K subscribers
628 photos
39 videos
29 files
3.52K links
Все о Data Science, машинном обучении и искусственном интеллекте: от базовой теории до cutting-edge исследований и LLM.

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
🤖 Как развернуть LLM с помощью vLLM и TorchServe

Хочешь запустить большую языковую модель в продакшене, но не знаешь, как совместить простоту развертывания с промышленной надежностью? Комбинация vLLM и TorchServe решает эту задачу. Она обеспечивает как простой запуск, так и продвинутые возможности для масштабирования.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Задачка по Python

Напишите скрипт, который удаляет дублирующиеся строки из CSV-файла на основе указанного столбца и сохраняет результат в новый файл.

➡️ Пример:

python remove_duplicates.py input.csv output.csv column_name
id,name,age
1,John,30
2,Jane,25
4,Bob,35


Решение задачи ⬇️

import pandas as pd
import sys

if len(sys.argv) < 4:
print("Использование: python remove_duplicates.py <input_file> <output_file> <column_name>")
sys.exit(1)

input_file = sys.argv[1]
output_file = sys.argv[2]
column_name = sys.argv[3]

try:
df = pd.read_csv(input_file)
df = df.drop_duplicates(subset=[column_name])
df.to_csv(output_file, index=False)
print(f"Дубликаты удалены. Результат сохранён в {output_file}")
except Exception as e:
print(f"Ошибка: {e}")
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Как нейросети меняют работу дизайнеров

Статья раскрывает, как дизайнеры студии используют ИИ для усиления креативности в проектах. Обсуждаются инструменты и подходы, которые помогают сохранить индивидуальность и создать продуманный дизайн с помощью нейросетей.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔎 Подборка вакансий для сеньоров

Data Scientist / Дата сайентист
🟢Python, SQL, Git, Docker, Airflow
🟢от 250 000 до 300 000 ₽ на руки | 3–6 лет

Middle/Senior Python Developer
🟢Python, Django, FastAPI, Flask, PostgreSQL, MongoDB, Redis, AWS, Google Cloud, Microsoft Azure, Kafka, RabbitMQ
🟢Уровень дохода не указан | 1–3 года

Senior ML Engineer (NLP, TTS)
🟢Deep Learning, NLP, TTS, CV, Python
🟢до 15 000 $ на руки | более 6 лет

ML Engineer / Senior Data Scientist
🟢Python, PyTorch, TensorFlow, Airflow, PySpark, ONNX, NumPy, SQL, Docker
🟢Уровень дохода не указан | 3–6 лет

Data Analyst (Antifraud)
🟢Python, Pandas, NumPy, SciPy, ClickHouse, PostgreSQL, MySQL, Redash, Superset
🟢Уровень дохода не указан | 3–6 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ 30k аудиозаписей: наводим порядок

Статья рассказывает, как организовать и обработать огромный архив аудиозаписей дневников, созданных задолго до эпохи современных speech-to-text технологий. Рассматриваются инструменты и подходы для упорядочивания данных.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🕵️‍♂️ Когда твоя работа зависит от Василия

Задача вроде простая, но всё стопорится, потому что «это знает только Василий, он тут со времён динозавров». Никакой документации, только магия в его голове. В итоге — пока он не ответит, ты зависаешь, а проект буксует. Звучит знакомо?

⚙️ Если так, пора разорвать этот порочный круг. Вместо бесконечных вопросов начни собирать всё в одну базу знаний — хоть в Notion, хоть на салфетках. Предложи команде попробовать парное программирование: пока Василий творит чудеса, ты уже разбираешься, как эти фокусы повторить.
Please open Telegram to view this post
VIEW IN TELEGRAM
🔎 Подборка вакансий для лидов

Python Lead
🟢Python 3, FastAPI, Django, Streamlit, Pandas, Numpy, SciPy, PostgreSQL, Apache Kafka
🟢Уровень дохода не указан | 3–6 лет

Lead Python Developer
🟢Python, FastAPI
🟢Уровень дохода не указан | 3–6 лет

Data Analyst Team Lead
🟢SQL (PostgreSQL, Clickhouse), Python, Tableau
🟢Уровень дохода не указан | более 6 лет

Lead Data Engineer
🟢Scala, Python, SQL, ClickHouse, PostgreSQL, MySQL, Apache Spark, Apache Airflow, AWS S3, Kubernetes, Docker, GitLab CI, Tableau
🟢Уровень дохода не указан | более 6 лет

Python Backend Developer (AI)
🟢Python, Flask, SQL, Docker, AWS, Azure, GCP, Yandex.Cloud
🟢от 250 000 ₽ на руки | 3–6 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔 Прогнозирование продаж с использованием библиотеки Prophet

Статья посвящена прогнозированию продаж FTTB-FMC для ежедневной отчетности. Рассматриваются подходы к анализу данных, ключевые KPI и методы, используемые для прогнозирования продаж в сегменте ШПД и конвергентных продуктов.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Что такое декораторы в Python и как они работают?

Декораторы — это функции в Python, которые принимают другую функцию в качестве аргумента и возвращают новую функцию с добавленным поведением. Это удобный способ модификации или расширения функциональности без изменения исходного кода функции.

➡️ Пример:

# Декоратор для логирования вызовов функции
def log_call(func):
def wrapper(*args, **kwargs):
print(f"Вызов функции {func.__name__} с аргументами: {args}, {kwargs}")
result = func(*args, **kwargs)
print(f"Результат: {result}")
return result
return wrapper

# Применение декоратора
@log_call
def add(a, b):
return a + b

add(3, 5)


🗣️ В этом примере декоратор log_call добавляет логирование вызовов и результатов функции add. Декораторы позволяют делать код более модульным и удобным для повторного использования.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
🔎 Подборка зарубежных вакансий

Продакт Разработчик Python AI (удаленно)
🟢Python, Node.js, React, PostgreSQL, JavaScript, TypeScript, Django Framework, Redux
🟢от 1 900 до 2 700 $ до вычета налогов | 3–6 лет

QA automation team lead (Python)
🟢Python, QA, BDD, Selenium
🟢до 4 000 $ до вычета налогов | 3–6 лет

Founding NLP/LLM/AI Engineer
🟢Python, LLM, NLP, AI, RAG, NER
🟢от 4 000 до 7 000 $ до вычета налогов | 3–6 лет

Senior Python Developer
🟢Python, Flask, REST, API, JavaScript, MySQL, GitHub, Celery, Django, Linux, PHP, Java, Django Framework, Bash, Redis, Frontend, Backend, REST API, PostgreSQL, Unit Testing, jQuery, Ansible, Clickhouse, Gitlab, FastAPI, RestAPI, SQL, Git
🟢Уровень дохода не указан | 3–6 лет

Senior DevOps Engineer
🟢Docker, Bash, Git, Английский язык, AWS, Kubernetes, Terraform, Jenkins, Gitlab, Grafana, ELK, Linux, Python
🟢от 6 000 до 7 000 $ на руки | более 6 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Инфраструктура для Data-Engineer BI-tools

В этой статье я хотел бы показать куда уходят данные и что с ними происходит, когда пайплайны дата-инженеров заканчивают работу.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Задачка по Python

Напишите функцию, которая принимает строку и возвращает новую строку, из которой удалены все гласные буквы (a, e, i, o, u в любом регистре).

➡️ Пример:

print(remove_vowels("Hello World"))  # Ожидаемый результат: "Hll Wrld"
print(remove_vowels("Python is great")) # Ожидаемый результат: "Pythn s grt"


Решение задачи ⬇️

def remove_vowels(s):
vowels = "aeiouAEIOU"
return ''.join(char for char in s if char not in vowels)

# Пример использования:
print(remove_vowels("Hello World")) # Ожидаемый результат: "Hll Wrld"
print(remove_vowels("Python is great")) # Ожидаемый результат: "Pythn s grt"
Please open Telegram to view this post
VIEW IN TELEGRAM
✔️ Big Data мертвы, да здравствуют Smart Data

Давайте рассмотрим концепцию Smart Data и выясним, действительно ли Big Data превращаются во что-то более интеллектуальное.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Дообучаем языковую модель GPT2 с помощью Torch

Статья углубляется в дообучение языковых моделей, используя DistilGPT2 на данных QuyenAnhDE/Diseases_Symptoms. Рассматривается процесс настройки модели для генерации симптомов на основе заболеваний, с возможностью расширения логики.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Задачка по Python

Напишите функцию, которая принимает текст и возвращает наиболее часто встречающееся слово. Игнорируйте регистр и знаки препинания.

➡️ Пример:

text = "Data science is fun. Science makes data fun, and data makes science better."
print(most_frequent_word(text))
# Ожидаемый результат: "data"


Решение задачи ⬇️

import re
from collections import Counter

def most_frequent_word(text):
# Убираем знаки препинания и приводим текст к нижнему регистру
words = re.findall(r'\b\w+\b', text.lower())
# Подсчитываем частоту слов
word_counts = Counter(words)
# Возвращаем слово с максимальной частотой
return word_counts.most_common(1)[0][0]

# Пример использования:
text = "Data science is fun. Science makes data fun, and data makes science better."
print(most_frequent_word(text))
Please open Telegram to view this post
VIEW IN TELEGRAM
🔎 Подборка вакансий для джунов

Junior разработчик Python/Стажер (удаленно)
🟢Python, MongoDB, REST API, Bash, Linux, Git, FastAPI, Celery
🟢до 50 000 ₽ | 1–3 года

Младший инженер-программист (стажер)
🟢Python, JavaScript, API, Linux, Docker, IoT, Сетевые технологии, Базы данных
🟢Уровень дохода не указан | Без опыта

Junior Python developer
🟢Python, SQL, FastAPI, Aiohttp, PostgreSQL, MySQL, Docker, RabbitMQ, Kafka, SQLAlchemy
🟢Уровень дохода не указан | 1–3 года

Junior Data Analyst / Младший Аналитик
🟢SQL, Python, Power BI, Исследовательский анализ данных, Визуализация данных, Математическая статистика, Аналитика продаж, Бизнес-анализ
🟢от 70 000 до 100 000 ₽ | 1–3 года

Младший аналитик данных/Junior Data Analyst
🟢PostgreSQL, Airflow, Metabase, Clickhouse, Debezium, DataLens, SQL, Python
🟢Уровень дохода не указан | 1–3 года
Please open Telegram to view this post
VIEW IN TELEGRAM
📊 ИИ в Крипто-Торговле: Возможен ли Успех?

Статья описывает процесс создания успешных ИИ-моделей для автоматизированной крипто-торговли на ByBit. Рассматриваются три стратегии, их разработка, оптимизация и результаты, превысившие убытки.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Что такое @staticmethod и @classmethod в Python, и чем они отличаются?

Декораторы @staticmethod и @classmethod используются для создания методов, которые не требуют экземпляра класса. @staticmethod — это метод, который не зависит от экземпляра или самого класса, а @classmethod получает доступ к самому классу через первый параметр cls.

➡️ Пример:

class MyClass:
@staticmethod
def static_method():
return "Это статический метод"

@classmethod
def class_method(cls):
return f"Это метод класса {cls.__name__}"

# Использование
print(MyClass.static_method()) # Это статический метод
print(MyClass.class_method()) # Это метод класса MyClass


🗣️ В этом примере static_method ничего не знает о классе, в то время как class_method может взаимодействовать с классом, к которому он принадлежит. Используйте их в зависимости от того, нужно ли вам взаимодействие с классом.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
📝 Подборка вакансий для мидлов

Data Scientist
Python, SQL, MS SQL Server, PostgreSQL, A/B тестирование, ML-модели, Ad-Hoc аналитика
Уровень дохода не указан | Средний (Middle)

Data Scientist (Моделирование РБ)
Python, Spark, SQL, ML, DL, NLP, Apache Spark
Уровень дохода не указан | Средний (Middle)

ML Engineer / Инженер машинного обучения
Python, PyTorch, PostgreSQL, FastAPI, LLM, MLOps, Git, Docker, AirFlow
Уровень дохода не указан | Средний (Middle)

Python разработчик
Python, FastAPI, PostgreSQL, React
от 150 000 ₽ | Средний (Middle)

Python разработчик
Python, Flask, FastAPI, PostgreSQL, MySQL
Уровень дохода не указан | Средний (Middle)
Please open Telegram to view this post
VIEW IN TELEGRAM
1
⚙️ Как я учился писать промпты для RAG пайплайна. Разбор 3-го места на AI Journey 24 E-com AI assistant

Статья описывает опыт создания RAG-пайплайна с использованием Gigachat API для участия в AI Journey. Автор делится инсайтами, полученными в процессе разработки ассистента для рекомендаций товаров, который занял 3-е место.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM