Data Science | Machinelearning [ru] – Telegram
Data Science | Machinelearning [ru]
20.1K subscribers
629 photos
39 videos
29 files
3.52K links
Все о Data Science, машинном обучении и искусственном интеллекте: от базовой теории до cutting-edge исследований и LLM.

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
📊 ИИ в Крипто-Торговле: Возможен ли Успех?

Статья описывает процесс создания успешных ИИ-моделей для автоматизированной крипто-торговли на ByBit. Рассматриваются три стратегии, их разработка, оптимизация и результаты, превысившие убытки.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Что такое @staticmethod и @classmethod в Python, и чем они отличаются?

Декораторы @staticmethod и @classmethod используются для создания методов, которые не требуют экземпляра класса. @staticmethod — это метод, который не зависит от экземпляра или самого класса, а @classmethod получает доступ к самому классу через первый параметр cls.

➡️ Пример:

class MyClass:
@staticmethod
def static_method():
return "Это статический метод"

@classmethod
def class_method(cls):
return f"Это метод класса {cls.__name__}"

# Использование
print(MyClass.static_method()) # Это статический метод
print(MyClass.class_method()) # Это метод класса MyClass


🗣️ В этом примере static_method ничего не знает о классе, в то время как class_method может взаимодействовать с классом, к которому он принадлежит. Используйте их в зависимости от того, нужно ли вам взаимодействие с классом.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
📝 Подборка вакансий для мидлов

Data Scientist
Python, SQL, MS SQL Server, PostgreSQL, A/B тестирование, ML-модели, Ad-Hoc аналитика
Уровень дохода не указан | Средний (Middle)

Data Scientist (Моделирование РБ)
Python, Spark, SQL, ML, DL, NLP, Apache Spark
Уровень дохода не указан | Средний (Middle)

ML Engineer / Инженер машинного обучения
Python, PyTorch, PostgreSQL, FastAPI, LLM, MLOps, Git, Docker, AirFlow
Уровень дохода не указан | Средний (Middle)

Python разработчик
Python, FastAPI, PostgreSQL, React
от 150 000 ₽ | Средний (Middle)

Python разработчик
Python, Flask, FastAPI, PostgreSQL, MySQL
Уровень дохода не указан | Средний (Middle)
Please open Telegram to view this post
VIEW IN TELEGRAM
1
⚙️ Как я учился писать промпты для RAG пайплайна. Разбор 3-го места на AI Journey 24 E-com AI assistant

Статья описывает опыт создания RAG-пайплайна с использованием Gigachat API для участия в AI Journey. Автор делится инсайтами, полученными в процессе разработки ассистента для рекомендаций товаров, который занял 3-е место.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Задачка по Python

Напишите функцию, которая принимает DataFrame и возвращает имена двух столбцов с наибольшей положительной корреляцией.

➡️ Пример:

data = pd.DataFrame({
'A': [1, 2, 3, 4],
'B': [2, 4, 6, 8],
'C': [1, 0, 1, 0],
'D': [10, 20, 30, 40]
})

print(find_highest_correlation(data))
# Ожидаемый результат: ('B', 'D')


Решение задачи ⬇️

def find_highest_correlation(df):
corr_matrix = df.corr()
max_corr = 0
columns = (None, None)

for col1 in corr_matrix.columns:
for col2 in corr_matrix.columns:
if col1 != col2 and corr_matrix[col1][col2] > max_corr:
max_corr = corr_matrix[col1][col2]
columns = (col1, col2)

return columns

# Пример использования:
import pandas as pd

data = pd.DataFrame({
'A': [1, 2, 3, 4],
'B': [2, 4, 6, 8],
'C': [1, 0, 1, 0],
'D': [10, 20, 30, 40]
})

print(find_highest_correlation(data)) # Ожидаемый результат: ('B', 'D')
Please open Telegram to view this post
VIEW IN TELEGRAM
🤔 Размер имеет значение: как исторические данные помогают на этапе дизайна A/B-теста

Статья изучает применение метода CUPED в A/B-тестах для повышения чувствительности и сокращения выборок. Рассматривается его использование на этапе дизайна эксперимента без потери статистической мощности.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
📝 Подборка вакансий для сеньоров

Data engineer
SQL, Python, Apache Hadoop
Уровень дохода не указан | от 3 лет

Data Engineer
SQL, Python, Apache Airflow, Greenplum, Apache Spark
от 250 000 ₽ | от 2 лет

Senior Data Scientist
Python
Уровень дохода не указан | опыт не указан

ML-инженер
Машинное обучение, Deep Learning, Нейронные сети, Python, TensorFlow, PyTorch, Keras, Linux, Git, Docker
Уровень дохода не указан | опыт не указан

Разработчик БД (PostgreSQL, прикладные витрины)
SQL, PostgreSQL, ETL, Apache Airflow, Greenplum
Уровень дохода не указан | от 3 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Как обеспечить Data Quality терабайтов данных и зачем: опыт СИБУРа

Статья посвящена опыту СИБУРа в создании DQ-сервиса для обеспечения качества данных. Рассматриваются задачи DQ, архитектура решения и универсальные подходы, применимые для анализа данных в крупных компаниях.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
📝 Подборка вакансий для лидов

TeamLead Data Analyst
Python, DWH, ClickHouse
до 5 000 $ | от 3 лет

Главный администратор данных (Chief Data Steward) [Governance]
Git, SQL, Apache Kafka, NoSQL, PostgreSQL
Уровень дохода не указан | опыт не указан

Аналитик данных, senior/lead
SQL, Python, Apache Airflow, ETL, DWH
Уровень дохода не указан | от 3 лет

Lead/Senior Automation QA (Python or Java)
Python, Linux, Java, CI/CD, Docker, Тестирование API, Тестирование UI, Разработка тест-кейсов
Уровень дохода не указан | от 4 лет

Ведущий питонист
Python, Django, PostgreSQL, Docker
от 150 000 до 250 000 ₽ | опыт не указан
Please open Telegram to view this post
VIEW IN TELEGRAM
Многие из вас знают, что ШАД - одна из сильнейших школ для подготовки специалистов по анализу данных

Однако попасть в ШАД не так просто, нужно иметь сильную математическую базу и успешно пройти все этапы отбора.

Shad Helper готовит студентов к поступлению в Школу Анализа Данных Яндекса, AI Masters и магистратуру по анализу данных. В школе в основном ведутся занятия по высшей математике и программированию.
Все преподаватели кандидаты и доктора наук из МГУ, МФТИ, ВШЭ.

2 декабря 2024 года запускается новый поток подготовки к ШАД

💎Все преподаватели кандидаты и доктора наук из МГУ, МФТИ, ВШЭ
💎Есть система скидок за хорошую успеваемость
💎Длительность курса: ~6 месяцев
💎Оплата курса еженедельная (можно остановить обучение в любой момент)
💎Регулярные персонализированные домашние задания
💎Работа в мини-группах
💎Есть умный чат бот для студентов ( на базе gpt4)

🔗 Ссылка на телеграм @shadhelper

🎁 Для подписчиков канала скидка 30% на первоначальный взнос по промокоду DEVSP30

Реклама. ООО "Школа высшей математики". ИНН: 9728100991
erid: 2VtzqwmcPtb
⚙️ Пишем свою Diffusion модель с нуля

Статья предлагает разобраться в устройстве Diffusion моделей, их математике и принципах работы. Автор делится простыми объяснениями, примерами кода и результатами генерации изображений на собственной модели.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🕵️‍♂️ Держи код чистым

Никогда не думал, что через пару недель сам не разберёшься в своём коде? А коллеги тем более. Это реальность, если писать быстро и «как получится».

✔️ Совет: трать 10 минут после завершения задачи, чтобы убрать мусор, оставить комментарии и структурировать код. Это спасёт и тебя, и тех, кто будет работать с ним после тебя.
Please open Telegram to view this post
VIEW IN TELEGRAM
📝 Подборка зарубежных вакансий

Python Developer/Data Scientist
Python, Pandas, NumPy, NLP, TensorFlow, Keras, SQL, Git, Docker, NoSQL
от 5 500 $ | от 3 лет

Database Administrator
ClickHouse, PostgreSQL, Python, Linux, Bash, LVM
до 5 000 $ | опыт не указан

Python QA automation developer
Python, Linux, HTTP, TCP, CI/CD, DevOps
до 5 000 $ | опыт не указа
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Нейросетевой апскейлинг дома: вторая молодость для классических мультфильмов

Статья рассказывает, как с помощью нейросетей улучшить качество старых видеозаписей, включая VHS и DVD. Описываются инструменты, процесс и результаты с примерами, доступные каждому без глубоких технических знаний.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Проверка, являются ли две строки анаграммами

Напишите функцию, которая принимает две строки и проверяет, являются ли они анаграммами. Анаграммы — это слова, которые содержат одинаковые буквы в одинаковом количестве, но в разном порядке. Игнорируйте регистр и пробелы.

Пример:

result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True

result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False


Решение задачи🔽

def are_anagrams(str1, str2):
# Удаляем пробелы и приводим к одному регистру
str1 = ''.join(str1.lower().split())
str2 = ''.join(str2.lower().split())

# Проверяем, равны ли отсортированные символы
return sorted(str1) == sorted(str2)

# Пример использования:
result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True

result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False
Please open Telegram to view this post
VIEW IN TELEGRAM
🎞 Как за 6 промтов к ChatGPT создать Python скрипт, скачивающий видео с YouTube для просмотра на телевизоре через Kodi

Статья рассказывает, как с помощью Python и ChatGPT создать скрипт для автоматической загрузки видео с YouTube и генерации метаданных (описаний и обложек) для интеграции с медиацентром Kodi.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Поиск самого часто встречающегося элемента в списке

Напишите функцию, которая принимает список и возвращает элемент, который встречается чаще всего. Если таких элементов несколько, вернуть любой из них.

Пример:

numbers = [1, 3, 2, 3, 4, 1, 3, 2, 1]
result = most_frequent(numbers)
print(result)
# Ожидаемый результат: 3 (или 1, если в списке оба встречаются одинаково часто)


Решение задачи🔽

from collections import Counter

def most_frequent(lst):
count = Counter(lst)
return max(count, key=count.get)

# Пример использования:
numbers = [1, 3, 2, 3, 4, 1, 3, 2, 1]
result = most_frequent(numbers)
print(result) # Ожидаемый результат: 3
Please open Telegram to view this post
VIEW IN TELEGRAM
📝 Подборка вакансий для джунов

QA Automation Engineer Junior (Python)
Python, PyTest, ООП, SQL, PostgreSQL
Уровень дохода не указан | от 1 года

Data Engineer
Python, SQL, ETL, Docker, Kubernetes, Apache Airflow
Уровень дохода не указан | опыт не указан

Инженер данных/Data Engineer в Управление анализа данных
SQL, Jira, Confluence, Hadoop, Bitbucket
Уровень дохода не указан | опыт не указан

Младший аналитик
Python, SQL, Microsoft Excel, Английский язык, Анализ данных, Машинное обучение, Нейронные сети
от 130 000 ₽ | опыт не указан
Please open Telegram to view this post
VIEW IN TELEGRAM