Data Science | Machinelearning [ru] – Telegram
Data Science | Machinelearning [ru]
20.1K subscribers
630 photos
39 videos
29 files
3.52K links
Все о Data Science, машинном обучении и искусственном интеллекте: от базовой теории до cutting-edge исследований и LLM.

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
🤖 Как мы сделали клиентскую поддержку интернет-магазина действительно умной: опыт внедрения RAG-бота

Статья описывает разработку «умного» помощника для клиентской поддержки интернет-магазина. Рассматриваются проблемы, с которыми сталкивался клиент, и пути их решения с помощью ИИ.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Что такое argparse в Python?

argparse — это стандартный модуль Python для работы с аргументами командной строки. Он позволяет удобно разбирать, валидировать и документировать входные параметры.

➡️ Пример:

import argparse

# Создаём парсер аргументов
parser = argparse.ArgumentParser(denoscription="Пример работы с argparse")
parser.add_argument("--name", type=str, help="Имя пользователя")
parser.add_argument("--age", type=int, help="Возраст пользователя")

# Разбираем аргументы
args = parser.parse_args()

# Используем аргументы
print(f"Привет, {args.name}! Тебе {args.age} лет.")


🗣️ В этом примере argparse разбирает аргументы --name и --age, переданные через командную строку. Это упрощает создание CLI-приложений.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
📝 Подборка вакансий для лидов

Team Lead IT отдела
Python, Django, FastAPI, Celery, PostgreSQL, Redis, JavaScript, Blazor wasm, ASP.NET, IdentityServer, Kafka, RabbitMQ
от 150 000 ₽ | от 3 лет

ML Engineer
Python, TensorFlow, PyTorch, Keras, SQL, Pandas, Jupyter Notebook, OpenAI GPT, LLaMA, Whisper, Google TTS, Amazon Polly, WebRTC, Zoom API, Google Calendar API, iCalendar, REST, GraphQL, MLOps, MLflow, DVC
от 1 000 до 2 000 $ | от 3 лет

Архитектор Решений / Solution Architect
Greenplum, Apache Spark, Apache Airflow, DWH, ETL, SQL, Python, Teradata, Hadoop, Apache NiFi, S3, Apache Spark Streaming
Уровень дохода не указан | от 3 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Пишем сервис инференса ML-модели на go, на примере BERT-а

Статья объясняет, как внедрить ML-модель, обученную на Python, в сервис на Go, используя ONNX. Рассматривается пример работы с моделью seara/rubert-tiny2-russian-sentiment для анализа сентимента текста.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 Тренируй «мышцы контекстного переключения»

Работаешь сразу над несколькими проектами, но каждый раз, переключаясь между задачами, чувствуешь, что теряешь поток? Это проблема многих.

👉 Совет: прежде чем сменить задачу, потрать пару минут на запись текущего состояния. Напиши кратко: что ты сделал, что осталось, какие идеи у тебя есть. Когда вернёшься, тебе не придётся вспоминать всё с нуля — это экономит тонны времени и нервов.
Please open Telegram to view this post
VIEW IN TELEGRAM
💬 Голосовая аутентификация через GPT

Статья исследует возможность аутентификации пользователей GPT-чата во внешних приложениях. Рассматривается голосовое взаимодействие и альтернативный способ аутентификации через пароли вместо OAuth 2.0.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Удаление выбросов из набора данных

Напишите функцию, которая принимает pandas.DataFrame и название столбца, а затем возвращает новый DataFrame, в котором выбросы (значения, выходящие за пределы 1.5 межквартильного размаха) удалены.

Пример:

import pandas as pd

data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})

cleaned_data = remove_outliers(data, "values")
print(cleaned_data)
# Ожидаемый результат:
# values
# 0 10
# 1 12
# 2 15
# 4 14
# 5 13
# 6 11
# 8 16


Решение задачи🔽

import pandas as pd

def remove_outliers(df, column):
Q1 = df[column].quantile(0.25)
Q3 = df[column].quantile(0.75)
IQR = Q3 - Q1

lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR

return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]

# Пример использования:
data = pd.DataFrame({
"values": [10, 12, 15, 100, 14, 13, 11, 102, 16]
})

cleaned_data = remove_outliers(data, "values")
print(cleaned_data)
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Как я взломал одну из самых топовых нейросетей (Claude 3.5 Sonnet) для студенческой научной статьи

Статья раскрывает исследование по снятию защиты в современной языковой модели ИИ. Описан процесс автоматизации взлома модели и представлена программа, демонстрирующая успешный обход встроенных механизмов безопасности.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Заполнение пропущенных значений медианой в числовых столбцах

Напишите функцию, которая принимает pandas.DataFrame и возвращает новый DataFrame, где все пропущенные значения (NaN) в числовых столбцах заменены на медиану соответствующего столбца.

Пример:

import pandas as pd

data = pd.DataFrame({
'age': [25, 30, None, 45, 50],
'salary': [50000, 60000, 55000, None, 65000],
'city': ['NY', 'LA', 'NY', 'SF', 'LA']
})

cleaned_data = fill_missing_with_median(data)
print(cleaned_data)


     age    salary city
0 25.0 50000.0 NY
1 30.0 60000.0 LA
2 37.5 55000.0 NY
3 45.0 57500.0 SF
4 50.0 65000.0 LA


Решение задачи🔽

import pandas as pd

def fill_missing_with_median(df):
df_filled = df.copy()
for col in df_filled.select_dtypes(include='number').columns:
median = df_filled[col].median()
df_filled[col].fillna(median, inplace=True)
return df_filled

# Пример использования:
data = pd.DataFrame({
'age': [25, 30, None, 45, 50],
'salary': [50000, 60000, 55000, None, 65000],
'city': ['NY', 'LA', 'NY', 'SF', 'LA']
})

cleaned_data = fill_missing_with_median(data)
print(cleaned_data)
Please open Telegram to view this post
VIEW IN TELEGRAM
🔎 Подборка вакансий для джунов

Data Scientist в области языковых моделей (Junior)
🟢Python, pandas, numpy, matplotlib, обработка текстовых данных, машинное обучение, языковые модели (LLM), библиотека Hugging Face
🟢от 190 000 ₽ до вычета налогов | 1–3 года

Data-аналитик в области временных рядов (Junior)
🟢Python, pandas, numpy, scipy, matplotlib, seaborn, анализ временных рядов, SQL
🟢от 190 000 ₽ до вычета налогов | 1–3 года

Junior Data Engineer
🟢SQL, MS Excel, Access, ETL, OLAP, английский язык
🟢Уровень дохода не указан | 1–3 года

Junior Data Analyst
🟢SQL, MS SQL Server, PostgreSQL, Python, Git, статистический анализ, A/B тестирование, машинное обучение
🟢Уровень дохода не указан | 1–3 года
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Машинное обучение: Логистическая регрессия. Теория и реализация. С нуля

В этой статье я привел базовые сведения о логистической регрессии и показал как сделать модель с нуля на чистом Python. Логистическая функция, обучение, метрики качества для модели классификации, реализация и небольшой разбор обучения весов.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Что такое модуль shutil в Python и зачем он используется?

Модуль shutil предоставляет функции для работы с файлами и директориями, такие как копирование, перемещение и удаление. Он полезен для автоматизации задач управления файлами.

➡️ Пример:

import shutil

# Копирование файла
shutil.copy('source.txt', 'destination.txt')

# Перемещение файла
shutil.move('destination.txt', 'folder/destination.txt')


🗣️ В этом примере shutil.copy копирует файл, а shutil.move перемещает его в другую директорию. Это облегчает выполнение операций с файлами и папками.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
📝 Подборка вакансий для мидлов

Data-аналитик
🟢SQL, базы данных, аналитика данных
🟢от 200 000 до 300 000 ₽ | от 2 лет

Data Analyst (Middle)
🟢SQL, MySQL, Python, базы данных, алгоритмы и структуры данных, Tableau, анализ данных, PowerBI, визуализация
🟢от 200 000 до 250 000 ₽ | от 3 лет

Data Scientist (Скоринг/моделирование)
🟢Python, SQL, Hadoop, машинное обучение
🟢Уровень дохода не указан | от 1 года

Data Scientist (модели PD)
🟢SQL, Python, машинное обучение
🟢Уровень дохода не указан | от 1 года
Please open Telegram to view this post
VIEW IN TELEGRAM
👀 Sora от OpenAI: принцип работы, примеры видео и сравнение с Runway

Компания OpenAI представила свою ИИ-модель для генерации видео — Sora. В статье обсуждаются ожидания, доступность и сравнительный анализ с конкурентами, такими как Kling AI и Runway Gen-3.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👩‍💻 Поиск наиболее часто встречающегося слова в тексте

Напишите функцию, которая принимает текстовую строку и возвращает наиболее часто встречающееся слово и количество его вхождений. Игнорируйте регистр и знаки препинания.

Пример:

text = "Python is great, and Python is fun! Learning Python is rewarding."
result = most_common_word(text)
print(result)
# Ожидаемый результат: ('python', 3)


Решение задачи🔽

import re
from collections import Counter

def most_common_word(text):
words = re.findall(r'\b\w+\b', text.lower())
counter = Counter(words)
return counter.most_common(1)[0]

# Пример использования:
text = "Python is great, and Python is fun! Learning Python is rewarding."
result = most_common_word(text)
print(result)
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ ML в промышленности: как построить систему управления процессом окомкования железорудных окатышей

Статья расскажет, как машинное обучение помогает улучшить процесс производства железорудных окатышей, снизив зависимость от человеческого фактора, и о примерах, когда технологии сталкиваются с реальными проблемами.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🎁 Динамическая адаптация награды с помощью Pydantic

Статья рассказывает, как Pydantic помогает бизнесу гибко управлять наградами для пользователей. Описаны преимущества Pydantic в валидации и преобразовании данных по сравнению с dataclass.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
📝 Подборка вакансий для сеньоров

Data Engineer (Golang)
Golang, ClickHouse, MySQL, MongoDB, Kubernetes, HTTP/gRPC API, Apache Kafka, Redis
Уровень дохода не указан | от 3 лет

Data Scientist NLP (портал gosuslugi.ru)
Python 3, numpy, pandas, scipy, sklearn, PyTorch, NLTK, transformers, FastAPI, Docker, Spark/Hadoop
Уровень дохода не указан | от 1 года

Senior Data Engineer
Apache Hadoop, Spark (batch/streaming), Scala, SQL, Parquet, Hive, Kafka, HBase, ClickHouse, PostgreSQL, Airflow, Zeppelin, Jupyter, S3 MinIO
Уровень дохода не указан | от 5 лет

Senior Python Dev (AI, Big Data, LLM)
Python, PostgreSQL, Big Data, AI, ML, ClickHouse, Time Series, Go
от 3 000 $ | от 5 лет
Please open Telegram to view this post
VIEW IN TELEGRAM
⚙️ Что такое functools.lru_cache в Python и зачем он используется?

functools.lru_cache — это декоратор, который позволяет кэшировать результаты функции для повышения производительности. Он запоминает результаты вызовов функции с определёнными аргументами и возвращает их из кэша при повторных вызовах.

➡️ Пример:

from functools import lru_cache
import time

@lru_cache(maxsize=3)
def slow_function(n):
time.sleep(2)
return n * 2

print(slow_function(5)) # Выполняется медленно (2 секунды)
print(slow_function(5)) # Возвращает результат мгновенно из кэша


🗣️ В этом примере функция slow_function кэширует результаты для трёх последних аргументов. Повторный вызов с теми же аргументами возвращает результат мгновенно, ускоряя выполнение.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM