Data Science | Machinelearning [ru] – Telegram
Data Science | Machinelearning [ru]
20.1K subscribers
632 photos
39 videos
29 files
3.52K links
Все о Data Science, машинном обучении и искусственном интеллекте: от базовой теории до cutting-edge исследований и LLM.

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
📝 Подборка вакансий для мидлов

Data Analyst со знанием 1C / SQL / Python
1C, PostgreSQL, Python, SQL, Tableau
от 150 000 до 200 000 ₽ | от 3 лет опыта

Разработчик чатбота с интеграцией LLM/специалист по Data Science
Python, Обработка естественного языка, Машинное обучение, Pandas, Анализ данных
от 300 до 450 € | Опыт не указан

Data Scientist
Python, SQL, Машинное обучение, Анализ данных, Математическая статистика
Уровень дохода не указан | от 2 лет опыта
Please open Telegram to view this post
VIEW IN TELEGRAM
👍41
⚙️ Нейросетевой апскейлинг дома: вторая молодость для классических мультфильмов

Статья рассказывает, как с помощью нейросетей улучшить качество старых видеозаписей, включая VHS и DVD. Описываются инструменты, процесс и результаты с примерами, доступные каждому без глубоких технических знаний.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍52
👩‍💻 Проверка, являются ли две строки анаграммами

Напишите функцию, которая принимает две строки и проверяет, являются ли они анаграммами. Анаграммы — это слова, которые содержат одинаковые буквы в одинаковом количестве, но в разном порядке. Игнорируйте регистр и пробелы.

Пример:

result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True

result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False


Решение задачи🔽

def are_anagrams(str1, str2):
# Удаляем пробелы и приводим к одному регистру
str1 = ''.join(str1.lower().split())
str2 = ''.join(str2.lower().split())

# Проверяем, равны ли отсортированные символы
return sorted(str1) == sorted(str2)

# Пример использования:
result1 = are_anagrams("listen", "silent")
print(result1) # Ожидаемый результат: True

result2 = are_anagrams("hello", "world")
print(result2) # Ожидаемый результат: False
Please open Telegram to view this post
VIEW IN TELEGRAM
👍11👎32
🎞 Как за 6 промтов к ChatGPT создать Python скрипт, скачивающий видео с YouTube для просмотра на телевизоре через Kodi

Статья рассказывает, как с помощью Python и ChatGPT создать скрипт для автоматической загрузки видео с YouTube и генерации метаданных (описаний и обложек) для интеграции с медиацентром Kodi.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥51👍1
💬 Внедрение ИИ в общение с клиентами

Статья исследует развитие ИИ в общении с клиентами и его интеграцию в бизнес. Обсуждаются успехи и сложности внедрения чат-ботов, важность настройки под бизнес-цели и перспективы замены сотрудников ИИ.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍1
📝 Подборка вакансий для сеньоров

Prompt-инженер
Технический перевод, техническая документация, Python
до 200 000 ₽ | Старший (Senior) уровень

Аналитик данных / Data Analyst
SQL, Python, математическая статистика, Jupyter Notebook, A/B тестирование
от 300 000 до 400 000 ₽ | Старший (Senior) уровень

Database Administrator
ClickHouse, PostgreSQL, Python
до 5 000 $ | Старший (Senior) уровень
Please open Telegram to view this post
VIEW IN TELEGRAM
1
⚙️ Что такое модуль collections в Python и как он используется?

collections — это стандартный модуль Python, который предоставляет высокопроизводительные контейнеры данных, такие как Counter, deque, и defaultdict. Он используется для более удобной работы со структурами данных.

➡️ Пример:

from collections import Counter

data = ['apple', 'banana', 'apple', 'orange', 'banana', 'apple']
counter = Counter(data)
print(counter) # Counter({'apple': 3, 'banana': 2, 'orange': 1})


🗣️ В этом примере Counter подсчитывает количество каждого элемента в списке data. Это полезно для анализа данных, работы с частотами или подсчёта элементов в коллекциях.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
3
📝 Подборка вакансий для лидов

Team Lead Data Science
Python, PySpark, SQL, Hadoop, Linux, Bash, Git
Уровень дохода не указан | от 3 лет опыта

Team Lead Data Scientist (Персонификация)
Git, Машинное обучение, NLP
Уровень дохода не указан | Опыт не указан

Ведущий инженер данных (Data Platform и ML)
SQL, Python, ClickHouse, Apache Kafka, Apache Airflow, Grafana, DWH, ETL, Apache Spark
Уровень дохода не указан | от 3 лет опыта
Please open Telegram to view this post
VIEW IN TELEGRAM
1
⚙️ MarketNet: Применение компьютерного зрения на финансовых рынках

Рассмотрим, может ли машинное обучение реально помогать трейдерам. Разберём процесс создания MarketNet, от экспериментов с классификацией до оценки успешности сделок на основе данных OHLC и рыночных профилей.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍42
🔍 Будь ленивым — автоматизируй

Каждый раз вручную выполняешь одно и то же действие? Создаёшь файлы, пишешь повторяющиеся команды?

👉 Совет: если ты делаешь одно и то же больше трёх раз, это надо автоматизировать. Скрипты, алиасы, макросы в IDE — пусть машина работает за тебя, а ты занимайся более сложными задачами.
Please open Telegram to view this post
VIEW IN TELEGRAM
16
⚙️ Как я взломал одну из самых топовых нейросетей (Claude 3.5 Sonnet) для студенческой научной статьи

Статья раскрывает исследование по снятию защиты в современной языковой модели ИИ. Описан процесс автоматизации взлома модели и представлена программа, демонстрирующая успешный обход встроенных механизмов безопасности.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
4
⚙️ Машинное обучение: Логистическая регрессия. Теория и реализация. С нуля

В этой статье я привел базовые сведения о логистической регрессии и показал как сделать модель с нуля на чистом Python. Логистическая функция, обучение, метрики качества для модели классификации, реализация и небольшой разбор обучения весов.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
8👍3🐳1
👩‍💻 Поиск наиболее часто встречающегося слова в тексте

Напишите функцию, которая принимает текстовую строку и возвращает наиболее часто встречающееся слово и количество его вхождений. Игнорируйте регистр и знаки препинания.

Пример:

text = "Python is great, and Python is fun! Learning Python is rewarding."
result = most_common_word(text)
print(result)
# Ожидаемый результат: ('python', 3)


Решение задачи🔽

import re
from collections import Counter

def most_common_word(text):
words = re.findall(r'\b\w+\b', text.lower())
counter = Counter(words)
return counter.most_common(1)[0]

# Пример использования:
text = "Python is great, and Python is fun! Learning Python is rewarding."
result = most_common_word(text)
print(result)
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥91
🎁 Динамическая адаптация награды с помощью Pydantic

Статья рассказывает, как Pydantic помогает бизнесу гибко управлять наградами для пользователей. Описаны преимущества Pydantic в валидации и преобразовании данных по сравнению с dataclass.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
👩‍💻 Классификация данных с использованием k-Nearest Neighbors (kNN)

Напишите функцию на Python, которая принимает обучающий набор данных, тестовый набор данных и значение 𝑘, а затем использует алгоритм k-ближайших соседей (kNN) для классификации тестовых данных. Функция должна возвращать предсказанные метки для тестового набора данных.

Пример:

import numpy as np

X_train = np.array([[1, 2], [2, 3], [3, 4], [5, 5]])
y_train = np.array([0, 0, 1, 1])
X_test = np.array([[2, 2], [4, 4]])

predictions = knn_classification(X_train, y_train, X_test, k=3)
print(predictions) # Ожидаемый результат: [0, 1]


Решение задачи🔽

from sklearn.neighbors import KNeighborsClassifier

def knn_classification(X_train, y_train, X_test, k=3):
model = KNeighborsClassifier(n_neighbors=k)
model.fit(X_train, y_train)
return model.predict(X_test)

# Пример использования:
import numpy as np

X_train = np.array([[1, 2], [2, 3], [3, 4], [5, 5]])
y_train = np.array([0, 0, 1, 1])
X_test = np.array([[2, 2], [4, 4]])

predictions = knn_classification(X_train, y_train, X_test, k=3)
print(predictions) # Ожидаемый результат: [0, 1]
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2👎1🐳1
🔎 Подборка вакансий для джунов

Data-analyst (junior)
🟢SQL, Python, Pandas, Matplotlib, Numpy, статистика
🟢Уровень дохода не указан | Без опыта

Power BI разработчик
🟢Power BI, Python, PostgreSQL, Apache Airflow, Git
🟢от 120 000 ₽ | Опыт работы: 1–3 года

Junior Data Analyst
🟢SQL, DataLens, Power BI, Python, ETL
🟢Уровень дохода не указан | Опыт работы: 1–3 года
Please open Telegram to view this post
VIEW IN TELEGRAM
2
🛍 Искусственный интеллект в ритейле: как он предсказывает вашу следующую покупку в приложении

Разбираем Next Basket Recommendation (NBR) — метод предсказания товаров, которые пользователь добавит в корзину. Рассмотрим метрики оценки, частотные и нейросетевые подходы в онлайн-ритейле.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
1
⚙️ Что такое functools.partial в Python и зачем он нужен?

functools.partial позволяет создавать новые функции на основе существующих, фиксируя некоторые аргументы. Это полезно для упрощения кода, повышения читаемости и работы с колбэками.

➡️ Пример:

from functools import partial

def power(base, exponent):
return base ** exponent

square = partial(power, exponent=2) # Фиксируем степень = 2
cube = partial(power, exponent=3) # Фиксируем степень = 3

print(square(5)) # 25
print(cube(2)) # 8


🗣️ partial() фиксирует аргумент exponent, создавая новые функции square и cube. Теперь square(5) эквивалентно power(5, 2), но код чище.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
👍62👎1
📝 Подборка вакансий для мидлов

Data Scientist
Python, BI
Уровень дохода не указан | 1–3 года

Data Engineer
PostgreSQL, Apache Airflow, Greenplum, DWH, ETL
Уровень дохода не указан | 3–6 лет

AI Data Analysis Specialist
Python, NLP, Power BI, Анализ данных, BI, Визуализация, Tableau, Английский язык
Уровень дохода не указан | 1–3 года
Please open Telegram to view this post
VIEW IN TELEGRAM
1🔥1
🔧 ТОП-10 опенсорсных инструментов для работы с ИИ в 2025 году

Детальный разбор 10 самых перспективных инструментов для работы с ИИ в 2025 году. От создания умных ассистентов до построения мощных RAG-систем — разбираем возможности, сравниваем производительность, безопасность и простоту интеграции каждого решения.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2