Хочешь запустить большую языковую модель в продакшене, но не знаешь, как совместить простоту развертывания с промышленной надежностью? Комбинация vLLM и TorchServe решает эту задачу. Она обеспечивает как простой запуск, так и продвинутые возможности для масштабирования.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤1
Напишите скрипт, который удаляет дублирующиеся строки из CSV-файла на основе указанного столбца и сохраняет результат в новый файл.
python remove_duplicates.py input.csv output.csv column_name
id,name,age
1,John,30
2,Jane,25
4,Bob,35
Решение задачи
import pandas as pd
import sys
if len(sys.argv) < 4:
print("Использование: python remove_duplicates.py <input_file> <output_file> <column_name>")
sys.exit(1)
input_file = sys.argv[1]
output_file = sys.argv[2]
column_name = sys.argv[3]
try:
df = pd.read_csv(input_file)
df = df.drop_duplicates(subset=[column_name])
df.to_csv(output_file, index=False)
print(f"Дубликаты удалены. Результат сохранён в {output_file}")
except Exception as e:
print(f"Ошибка: {e}")
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4👎2❤1
Junior Data Analyst
Data Scientist
Junior Data Scientist
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
Статья раскрывает, как дизайнеры студии используют ИИ для усиления креативности в проектах. Обсуждаются инструменты и подходы, которые помогают сохранить индивидуальность и создать продуманный дизайн с помощью нейросетей.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2❤1
Скоринг Middle Data Scientist
• Git, Python, базы данных• Уровень дохода не указан | от 1 годаData Scientist в команду RecSys (middle)
• Машинное обучение, SQL, Python, PostgreSQL, Git, TensorFlow, ClickHouse, Apache Airflow, Pandas• Уровень дохода не указан | от 2 летАналитик данных в сфере HR, middle
• SQL, Power BI, анализ данных, математическая статистика• Уровень дохода не указан | от 2 летPlease open Telegram to view this post
VIEW IN TELEGRAM
❤1👍1
Статья рассказывает, как организовать и обработать огромный архив аудиозаписей дневников, созданных задолго до эпохи современных speech-to-text технологий. Рассматриваются инструменты и подходы для упорядочивания данных.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👍1
Напишите функцию, которая принимает строку и возвращает новую строку, из которой удалены все гласные буквы (
a, e, i, o, u в любом регистре).print(remove_vowels("Hello World")) # Ожидаемый результат: "Hll Wrld"
print(remove_vowels("Python is great")) # Ожидаемый результат: "Pythn s grt"Решение задачи
def remove_vowels(s):
vowels = "aeiouAEIOU"
return ''.join(char for char in s if char not in vowels)
# Пример использования:
print(remove_vowels("Hello World")) # Ожидаемый результат: "Hll Wrld"
print(remove_vowels("Python is great")) # Ожидаемый результат: "Pythn s grt"
Please open Telegram to view this post
VIEW IN TELEGRAM
❤6🐳3👎2
Статья посвящена прогнозированию продаж FTTB-FMC для ежедневной отчетности. Рассматриваются подходы к анализу данных, ключевые KPI и методы, используемые для прогнозирования продаж в сегменте ШПД и конвергентных продуктов.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5❤3
Product Analyst
• SQL, Amplitude, Анализ данных, Веб-аналитика• от 2 000 $ | более 3 летДата инженер
• Python, Apache Hadoop, Apache Spark, Apache Airflow, Apache Kafka• Уровень дохода не указан | от 2–3 летSenior Data Scientist в команду ценообразования
• Python, SQL• Уровень дохода не указан | от 3 летPlease open Telegram to view this post
VIEW IN TELEGRAM
❤1
В этой статье я хотел бы показать куда уходят данные и что с ними происходит, когда пайплайны дата-инженеров заканчивают работу.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1🐳1
Декораторы — это функции в Python, которые принимают другую функцию в качестве аргумента и возвращают новую функцию с добавленным поведением. Это удобный способ модификации или расширения функциональности без изменения исходного кода функции.
# Декоратор для логирования вызовов функции
def log_call(func):
def wrapper(*args, **kwargs):
print(f"Вызов функции {func.__name__} с аргументами: {args}, {kwargs}")
result = func(*args, **kwargs)
print(f"Результат: {result}")
return result
return wrapper
# Применение декоратора
@log_call
def add(a, b):
return a + b
add(3, 5)
🗣️ В этом примере декоратор log_call добавляет логирование вызовов и результатов функции add. Декораторы позволяют делать код более модульным и удобным для повторного использования.
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥4
Давайте рассмотрим концепцию Smart Data и выясним, действительно ли Big Data превращаются во что-то более интеллектуальное.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥6❤1👎1🐳1
Статья углубляется в дообучение языковых моделей, используя DistilGPT2 на данных QuyenAnhDE/Diseases_Symptoms. Рассматривается процесс настройки модели для генерации симптомов на основе заболеваний, с возможностью расширения логики.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3🔥2
Залип на архитектуре или не можешь построить логическую цепочку? Иногда монитор — не лучший инструмент.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20❤4🔥1
Team Lead Data Scientist
Аналитик данных (Data Analyst)
Junior Marketplace Researcher/Team Assistant
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2
Статья описывает процесс создания успешных ИИ-моделей для автоматизированной крипто-торговли на ByBit. Рассматриваются три стратегии, их разработка, оптимизация и результаты, превысившие убытки.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4🔥2
Напишите функцию, которая принимает текст и возвращает наиболее часто встречающееся слово. Игнорируйте регистр и знаки препинания.
text = "Data science is fun. Science makes data fun, and data makes science better."
print(most_frequent_word(text))
# Ожидаемый результат: "data"
Решение задачи
import re
from collections import Counter
def most_frequent_word(text):
# Убираем знаки препинания и приводим текст к нижнему регистру
words = re.findall(r'\b\w+\b', text.lower())
# Подсчитываем частоту слов
word_counts = Counter(words)
# Возвращаем слово с максимальной частотой
return word_counts.most_common(1)[0][0]
# Пример использования:
text = "Data science is fun. Science makes data fun, and data makes science better."
print(most_frequent_word(text))
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4👎3
• Разбей и властвуй: как создать кастомный токенизатор в SpaCy
• Функция property() в Python: добавляем управляемые атрибуты в классы
• Что, если не трансформеры: какие альтернативы главной архитектуре нейросетей у нас есть в 2024 году
• cgroups и namespaces в Linux: как это работает?
• ML-тренды рекомендательных технологий: шесть приёмов, которые помогают угадывать желания пользователя
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4
Статья описывает опыт создания RAG-пайплайна с использованием Gigachat API для участия в AI Journey. Автор делится инсайтами, полученными в процессе разработки ассистента для рекомендаций товаров, который занял 3-е место.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤7
Data Scientist в области языковых моделей (Junior)
Junior analyst/Младший аналитик
Младший аналитик данных
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3👍1