Data Science | Machinelearning [ru] – Telegram
Data Science | Machinelearning [ru]
20K subscribers
636 photos
40 videos
29 files
3.52K links
Все о Data Science, машинном обучении и искусственном интеллекте: от базовой теории до cutting-edge исследований и LLM.

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
🧠 Создаем свой RAG: введение в LangGraph

В статье объясняют, что такое RAG и как использовать LangGraph для генерации с дополненной выборкой: основы, примеры и подготовка к созданию собственных RAG-систем.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
👩‍💻 Напишите функцию для расчёта Accuracy вручную

В машинном обучении Accuracy — это метрика качества классификации. Показывает, сколько предсказаний модель сделала правильно.

Решение задачи🔽

def accuracy_score(y_true, y_pred):
correct = 0
for true, pred in zip(y_true, y_pred):
if true == pred:
correct += 1
return correct / len(y_true)

# Пример использования:
y_true = [1, 0, 1, 1, 0, 1]
y_pred = [1, 0, 0, 1, 0, 1]

print(accuracy_score(y_true, y_pred)) # 0.833...
Please open Telegram to view this post
VIEW IN TELEGRAM
32🐳1
🤔 Выбираем MLOps инструменты с учётом зрелости команды

В статье разбирают, как выбрать MLOps-инструменты под уровень зрелости команды: почему решений много, но не все подходят, и как не утонуть в многообразии вариантов.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
🧠 Языковые модели против мошенников: как LLM помогают бороться с отмыванием денег и финансовым мошенничеством

В статье разбирают, как LLM помогает банкам бороться с мошенничеством: от отслеживания подозрительных транзакций до анализа фишинговых схем — умная защита в действии.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2
👩‍💻 Чем отличается метод .transform() от .apply() в pandas?

В pandas методы .transform() и .apply() часто используются для обработки данных по столбцам и строкам, но они работают по-разному. Метод .apply() применяет функцию к каждому элементу или ряду, и возвращает объект любой формы (например, DataFrame или Series). В отличие от него, .transform() применяет функцию к каждой ячейке или группе и возвращает объект той же формы, что и входной.

➡️ Пример:

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3], 'B': [10, 20, 30]})

# Используем .apply() для вычисления суммы по столбцам
print(df.apply(sum)) # Вернет Series с суммами столбцов

# Используем .transform() для нормализации каждого значения в столбце
print(df.transform(lambda x: (x - x.mean()) / x.std()))
# Вернет DataFrame с нормализованными значениями


🗣 .apply() подходит для сложных операций и агрегаций, а .transform() удобно использовать для обработки данных с сохранением исходной структуры.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
8
⚙️ Model Context Protocol (MCP): как подружить нейросети со всеми API за пару кликов

В статье рассказывают, как новый протокол MCP от Anthropic стандартизирует взаимодействие LLM-агентов с сервисами и друг с другом. Грядёт эпоха упорядоченного ИИ-хаоса.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥72
⚙️ Взлом ИИ-асситентов. Абсолютный контроль: выдаём разрешение от имени системы

В статье рассказывают, как уязвимость в ИИ позволяет обмануть систему команд: если подделать приказ, модель выполнит даже запрещённое. Неужели DAN снова на свободе?

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
4
👩‍💻 Построй визуализацию распределения признаков с автоматической категоризацией

Создайте функцию plot_distributions, которая принимает DataFrame и автоматически определяет числовые и категориальные признаки. Затем строит гистограммы или bar-графики в зависимости от типа данных. Это удобно для EDA (исследовательского анализа данных).

Решение задачи🔽

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

def plot_distributions(df, max_categories=10):
for column in df.columns:
plt.figure(figsize=(6, 4))
if pd.api.types.is_numeric_dtype(df[column]):
sns.histplot(df[column].dropna(), kde=True)
plt.noscript(f'Гистограмма: {column}')
elif df[column].nunique() <= max_categories:
df[column].value_counts().plot(kind='bar')
plt.noscript(f'Категории: {column}')
else:
print(f'Пропущен {column}: слишком много уникальных категорий')
continue
plt.tight_layout()
plt.show()

# Пример использования
df = pd.DataFrame({
'age': [23, 45, 31, 35, 62, 44, 23],
'gender': ['male', 'female', 'female', 'male', 'male', 'female', 'female'],
'income': [40000, 50000, 45000, 52000, 61000, 48000, 46000]
})

plot_distributions(df)
Please open Telegram to view this post
VIEW IN TELEGRAM
5
⚙️ Переходим от legacy к построению Feature Store

В статье рассказывают, как в Домклик внедрили Feature Store в проект с огромным legacy: неожиданные трудности, полезные инсайты и реальный профит от новой архитектуры

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
⚙️ INTELLECT-2: Первая большая (32B) параметрическая модель с распределенным обучением

В статье рассказывают о прорывной модели INTELLECT-2: обучение на рое вычислительных узлов вместо датацентров, асинхронное RL и инфраструктура, которую строили с нуля

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
⚙️ Есть ли у AMD перспективы в AI/ML/DL. Часть 1

В статье старший MLOps-инженер из Selectel рассказывает о сравнении документации AMD и NVIDIA в области AI/DL/ML: ожидания, реальность и погружение в хаос терминов

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
1
🤔 ИИ с человеческим лицом: какие ошибки повторяют модели и что с этим делать

В статье рассказывают, почему ИИ, как и люди, подвержен когнитивным искажениям: самоуверенность, предвзятость и шаблонное мышление — как это влияет на бизнес и технологии

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍1👎1
👩‍💻 Как работает модуль os в Python для работы с файловой системой?

Модуль os в Python предоставляет инструменты для взаимодействия с операционной системой. С его помощью можно управлять файлами и директориями, получать информацию о системе и переменных окружения, а также выполнять системные команды. Этот модуль особенно полезен для кроссплатформенных сценариев.

➡️ Пример:

import os

# Получение текущей директории
current_dir = os.getcwd()
print('Текущая директория:', current_dir)

# Создание новой директории
os.mkdir('new_folder')
print('Создана директория new_folder')


🗣 os позволяет удобно и кроссплатформенно работать с файловой системой, выполнять команды и настраивать окружение.
Please open Telegram to view this post
VIEW IN TELEGRAM
21
⚙️ Я делал концепции зданий 12 лет, а потом пришла нейросеть

12 лет я придумывал здания сам, но теперь рядом сидит ИИ. Рассказываю, как нейросети ворвались в архитектуру: где реально ускоряют, а где только мешают и требуют «додумать за них»

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
21
⚙️ Локальный чатбот без ограничений: гайд по LM Studio и открытым LLM

Ставлю себе локальный ИИ, чтобы не светить код в облаке. Подключаю LM Studio, балуюсь с системными промптами, прикручиваю бота к VS Code и проверяю, может ли он реально помогать в разработке

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
6
🧼 Почистить — значит улучшить

Устаревшие TODO, забытые константы, лишние зависимости — они не тормозят выполнение, но тормозят мышление.

👉 Совет: выделяй время на регулярную «гигиену проекта». Удаляй всё, что больше не используется. Не потому что надо — а потому что потом будет легче думать, читать и добавлять новое.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7
⚙️ Будущее ИИ — формальные грамматики

Разбираюсь, почему LLM иногда несут чушь: слишком много вариантов и мало правил. В статье покажу, как формальные грамматики помогают приручить этот хаос и научить модели мыслить структурно

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
5
This media is not supported in your browser
VIEW IN TELEGRAM
💯 нейросетей для ЛЮБЫХ задач.

Составили шпаргалку с бесплатными нейросетями - тексты, кодинг, аудио, видео, дизайн, слив данных и много чего ещё.

Подробности в закрепе
Please open Telegram to view this post
VIEW IN TELEGRAM
21
👀 Часть 2: Vision Transformer (ViT) — Когда трансформеры научились видеть

Рассказываю, как Vision Transformer заменил свёртки на внимание, почему изображения теперь режут на патчи, и в каких случаях трансформеры действительно видят, а когда всё ещё слепы.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2