В статье показывают, как обойти фильтры модели Claude с помощью модифицированного метода внедрения системных директив, чтобы заставить её выполнять запрещённые инструкции
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5⚡2
Обучение с учителем — это тип машинного обучения, при котором модель обучается на размеченных данных.
Каждый пример содержит вход (features) и правильный ответ (label), который модель должна научиться предсказывать.
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
model = LogisticRegression()
model.fit(X_train, y_train)
print("Предсказания:", model.predict(X_test[:5]))
🗣️ В этом примере модель обучается на данных о цветах и учится определять их вид (например, ирис сетоса).
Это классический пример классификации — подтипа обучения с учителем.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2⚡2
В статье показывают, как и зачем использовать C++ в машинном обучении: распознавание лиц, объекты в реальном времени и прирост в производительности без питоньих зависимостей
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3🐳3
🧠 Как внедрять LLM?
Сейчас хайп вокруг чат-ботов стихает и фокус смещается в сторону внедрения LLM и решения прикладных задач для пользователей и бизнеса. Как именно внедрять LLM и какие Copilot-решения нужны бизнесу обсудят на Turbo ML Conf. Конфа пройдет 19 июля в Москве и объединит 35 докладчиков из российских бигтехов и топовых вузов.
📊 После деловой и теоретической программы гостей ждет практика в виде разных интерактивов, среди которых – диджитал-сканворды, демостенды, где можно посмотреть, что под капотом платформенных решений и диджей-сет. Онлайн-трансляции не будет, поэтому лучше заранее зарегистрироваться — количество мест на участие в конференции ограничено.
Сейчас хайп вокруг чат-ботов стихает и фокус смещается в сторону внедрения LLM и решения прикладных задач для пользователей и бизнеса. Как именно внедрять LLM и какие Copilot-решения нужны бизнесу обсудят на Turbo ML Conf. Конфа пройдет 19 июля в Москве и объединит 35 докладчиков из российских бигтехов и топовых вузов.
📊 После деловой и теоретической программы гостей ждет практика в виде разных интерактивов, среди которых – диджитал-сканворды, демостенды, где можно посмотреть, что под капотом платформенных решений и диджей-сет. Онлайн-трансляции не будет, поэтому лучше заранее зарегистрироваться — количество мест на участие в конференции ограничено.
❤10👎2👍1🐳1
В этой статье мы расскажем о нашей новой модели FRIDA, которая сейчас (20.05.2025) занимает первое место в русскоязычном бенчмарке MTEB.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2⚡2👍1👎1
Напишите функцию, которая вычисляет accuracy score — долю правильных предсказаний модели классификации. Это базовая метрика, часто используемая для оценки качества модели.
Функция работает следующим образом:
• Сравнивает каждую пару истинного (y_true) и предсказанного (y_pred) значения.
• Считает количество совпадений.
• Делит число правильных предсказаний на общее количество примеров
Решение задачи
def accuracy_score(y_true, y_pred):
correct = sum(1 for true, pred in zip(y_true, y_pred) if true == pred)
return correct / len(y_true)
# Примеры использования
y_true = [0, 1, 1, 0, 1]
y_pred = [0, 0, 1, 0, 1]
print(accuracy_score(y_true, y_pred))
# Ожидаемый результат: 0.8
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2⚡1
This media is not supported in your browser
VIEW IN TELEGRAM
Рекомендательные системы в интернете работают уже так хорошо, что даже могут подсказать человеку скрытые интересы, о которых он сам не догадывается. Но рекомендации отчасти упёрлись в потолок. Что делать, чтобы дальнейший рост их качества не замедлялся, рассказал инженер рекомендательных систем Яндекса Николай Савушкин.
Смотреть в YouTube...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5👎3🔥1
Показываем, как применить MLlib из Apache Spark в своих проектах, и делимся советами, чтобы не сжечь кластеры раньше времени. Всё просто, даже если вы не Data Jedi.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4⚡2
Василий из Т-Банка объясняет, почему классические критерии согласия не всегда подходят для симуляции колл-центра. Покажет подводные камни и как не влететь в ловушку распределений.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤1🐳1
Токенизация — это процесс разбиения текста на отдельные части: слова, подслова или символы.
Часто используется на этапе предобработки текста для NLP-моделей.
Каждый токен — это минимальная смысловая единица, которую модель будет анализировать.
from sklearn.feature_extraction.text import CountVectorizer
texts = ["Я люблю машинное обучение", "Обучение — это интересно"]
vectorizer = CountVectorizer()
X = vectorizer.fit_transform(texts)
print(vectorizer.get_feature_names_out())
print(X.toarray())
# Вывод:
['интересно' 'люблю' 'машинное' 'обучение' 'это' 'я']
[[0 1 1 1 0 1]
[1 0 0 1 1 0]]
🗣️ Токенизация превращает текст в числовую матрицу, понятную модели.
Это первый шаг в обработке текста перед обучением моделей на естественном языке.
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5⚡2
В этом выпуске: Codex от OpenAI, GPT‑4.1, токсичный Grok, генератор от Tencent и агент DeepMind, который сам изобретает алгоритмы. ИИ неделя на максималках.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤2😁2
Функция
train_test_split() из библиотеки sklearn разбивает данные на обучающую и тестовую выборки.Это важно, чтобы проверить, как хорошо модель работает на невидимых данных.
from sklearn.model_selection import train_test_split
X = [[1], [2], [3], [4], [5]]
y = [0, 0, 1, 1, 1]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)
print("Обучение:", X_train)
print("Тест:", X_test)
🗣️ Почему важно:
• Модель не должна учиться на тех же данных, на которых её оценивают
• test_size указывает, какой процент данных пойдёт на тест
• random_state нужен для воспроизводимости
Это один из самых базовых, но обязательных шагов в любом ML-проекте
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3⚡2
Разбираемся, почему Stack Overflow теряет аудиторию: виноваты ли ИИ, UX или жадность? Плюс — что делает администрация и что ждёт разработчиков в пост-SO эпоху.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤4👎2⚡1
Разбор отчёта о соревнованиях по ML за 2024 год: кто победил, как и почему. Без мотивационных цитат — только конкретные приёмы, модели и стратегии, которые реально приносят $22 млн.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤3⚡2
Создайте Python-скрипт, который читает большой CSV-файл построчно, фильтрует строки по заданному критерию и подсчитывает агрегированные данные на основе указанного столбца. Скрипт должен эффективно обрабатывать файл, используя потоковое чтение (без загрузки файла целиком в память) и выводить итоговую статистику в консоль.
•
python process_data.py data.csv age 30 — фильтрует строки, где значение в столбце age больше 30, и подсчитывает общее количество таких записей и среднее значение в другом числовом столбце, например, salary.Решение задачи
import csv
import sys
def process_large_csv(file_path, filter_column, threshold, aggregate_column):
count = 0
total_sum = 0.0
with open(file_path, 'r', encoding='utf-8') as file:
reader = csv.DictReader(file)
for row in reader:
# Преобразование значений для фильтрации и агрегации
try:
filter_value = float(row[filter_column])
aggregate_value = float(row[aggregate_column])
except ValueError:
continue # Пропускаем строки с некорректными данными
# Фильтрация строк по заданному условию
if filter_value > threshold:
count += 1
total_sum += aggregate_value
# Вывод итоговой статистики
if count > 0:
average = total_sum / count
print(f"Обработано записей: {count}")
print(f"Среднее значение {aggregate_column} для записей, где {filter_column} > {threshold}: {average:.2f}")
else:
print("Записи, соответствующие условиям фильтрации, не найдены.")
if __name__ == "__main__":
if len(sys.argv) < 5:
print("Использование: python process_data.py <file_path> <filter_column> <threshold> <aggregate_column>")
sys.exit(1)
file_path = sys.argv[1]
filter_column = sys.argv[2]
threshold = float(sys.argv[3])
aggregate_column = sys.argv[4]
process_large_csv(file_path, filter_column, threshold, aggregate_column)
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡3❤2
• Построение базы знаний компании и поиска документов на LLM и RAG
• Что побуждает LLM врать и как этого избежать в своих продуктах
• Ломаем капчу 4Chan
• На чём учатся современные модели машинного перевода: опыт команды Яндекс Переводчика
• Gemini вырывается вперед, Китай спамит моделями, в Minecraft запустили AI-агентов: главные события ноября в сфере ИИ
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡3❤1
Автор исследует, почему нейросети пока плохо отличают ИИ-тексты от человеческих, и делится, что реально работает (или не очень), если вы вдруг решите их «перехитрить».
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡2❤1
Обновил библиотеку, всё сломалось, и теперь ты в дебаге на два часа? Классика.
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡2❤1
RDS — это про то, как машинке выбрать лучший вариант уведомления или карточки, чтобы ты вернулся. Объясняем, как он усиливает ML-модели и растит вовлечённость пользователей.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
❤5⚡2
Автор копает, почему ИИ фантазирует, как это мешает в работе и чем тут помогут промпты. В финале — гайд, как писать запросы без сюрпризов.
Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡5❤1