Data Science | Machinelearning [ru] – Telegram
Data Science | Machinelearning [ru]
20K subscribers
637 photos
40 videos
29 files
3.52K links
Все о Data Science, машинном обучении и искусственном интеллекте: от базовой теории до cutting-edge исследований и LLM.

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
⚙️ Как обойти детекторы текста, сгенерированного ИИ

Автор исследует, почему нейросети пока плохо отличают ИИ-тексты от человеческих, и делится, что реально работает (или не очень), если вы вдруг решите их «перехитрить».

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
21
⛓️ Обновление зависимости — это маленький рефакторинг

Обновил библиотеку, всё сломалось, и теперь ты в дебаге на два часа? Классика.

👉 Совет: относись к обновлению зависимостей как к отдельной, полноценной задаче. Тесты, чеклисты, небольшие коммиты. Чем меньше сюрпризов ты оставишь себе на проде — тем крепче будешь спать.
Please open Telegram to view this post
VIEW IN TELEGRAM
21
⚙️ Как алгоритм Recovering Difference Softmax (RDS) делает рекомендации и уведомления точнее и эффективнее

RDS — это про то, как машинке выбрать лучший вариант уведомления или карточки, чтобы ты вернулся. Объясняем, как он усиливает ML-модели и растит вовлечённость пользователей.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
52
⚙️ Где ИИ врёт и как с этим жить — мой гайд после фейлов

Автор копает, почему ИИ фантазирует, как это мешает в работе и чем тут помогут промпты. В финале — гайд, как писать запросы без сюрпризов.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
51
👩‍💻 Предсказание уникальности пользователя

У вас есть список действий пользователей на платформе. Каждое действие представлено словарём с полями "user_id", "action", и "timestamp". Нужно реализовать функцию, которая определит, является ли пользователь "уникальным".

Уникальный пользователь — это тот, кто:

• совершал более 3 действий,
• все действия происходили в разные дни,
• не совершал одинаковые действия дважды.


Верните список user_id, соответствующих этому критерию.

Решение задачи🔽

from collections import defaultdict
from datetime import datetime

def find_unique_users(logs):
activity = defaultdict(lambda: {"actions": set(), "days": set(), "count": 0})

for log in logs:
user = log["user_id"]
action = log["action"]
date = datetime.fromisoformat(log["timestamp"]).date()

activity[user]["actions"].add(action)
activity[user]["days"].add(date)
activity[user]["count"] += 1

result = []
for user, data in activity.items():
if (
data["count"] > 3 and
len(data["days"]) == data["count"] and
len(data["actions"]) == data["count"]
):
result.append(user)

return result

# Пример использования
logs = [
{"user_id": 1, "action": "login", "timestamp": "2023-05-01T10:00:00"},
{"user_id": 1, "action": "view", "timestamp": "2023-05-02T11:00:00"},
{"user_id": 1, "action": "click", "timestamp": "2023-05-03T12:00:00"},
{"user_id": 1, "action": "logout", "timestamp": "2023-05-04T13:00:00"},

{"user_id": 2, "action": "login", "timestamp": "2023-05-01T10:00:00"},
{"user_id": 2, "action": "login", "timestamp": "2023-05-01T11:00:00"},
{"user_id": 2, "action": "click", "timestamp": "2023-05-01T12:00:00"},
]

print(find_unique_users(logs)) # Ожидаемый результат: [1]
Please open Telegram to view this post
VIEW IN TELEGRAM
22
⚙️ Как все рынки мира оказались уязвимы конкуренции с любым умным айтишником

История о том, как в текущем моменте истории, по сути любой разработчик может в одиночку задизраптить любой вертикальный рынок и даже отрасль.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
33
🗣 Синтез речи 2025: топ-4 бесплатных нейросетей для озвучки текста

Сравниваем 4 синтеза речи: интонации, паузы, эмоции. Кто из них справится с «Хоббитом» и сможет звучать как рассказчик, а не как робот? Проверим голосом, а не графиком.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
22
⚙️ Что такое argparse в Python?

argparse — это стандартный модуль Python для работы с аргументами командной строки. Он позволяет удобно разбирать, валидировать и документировать входные параметры.

➡️ Пример:

import argparse

# Создаём парсер аргументов
parser = argparse.ArgumentParser(denoscription="Пример работы с argparse")
parser.add_argument("--name", type=str, help="Имя пользователя")
parser.add_argument("--age", type=int, help="Возраст пользователя")

# Разбираем аргументы
args = parser.parse_args()

# Используем аргументы
print(f"Привет, {args.name}! Тебе {args.age} лет.")


🗣️ В этом примере argparse разбирает аргументы --name и --age, переданные через командную строку. Это упрощает создание CLI-приложений.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
21
🤔 На START, внимание, марш: как победить галлюцинации и научить LLM точным вычислениям

START — опенсорсная LLM для точных вычислений и проверки кода. В START решены две главные проблемы большинства обычных моделей: галлюцинации и ошибки в многоэтапных расчетах. В статье разберемся, зачем и как именно эти проблемы решены..

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
33🔥2
➡️ Объяснимый ИИ в ML и DL

Разбираемся, зачем нужен объяснимый ИИ, как подступиться к интерпретации моделей и что с этим делать на практике — от EDA до XAI на примере. Всё на русском, без магии.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
21🔥1
👩‍💻 Вычисление “стабильных” признаков

Вам дана матрица признаков — список списков, где каждая строка представляет собой объект, а каждый столбец — отдельный числовой признак.
Ваша задача — определить, какие признаки можно считать стабильными.

Стабильный признак — это признак, у которого стандартное отклонение по всем объектам меньше заданного порога threshold.


Реализуйте функцию find_stable_features(matrix, threshold), которая возвращает список индексов признаков (столбцов), удовлетворяющих этому условию.

Решение задачи🔽

import numpy as np

def find_stable_features(matrix, threshold=0.1):
data = np.array(matrix)
stds = np.std(data, axis=0)
stable_indices = [i for i, std in enumerate(stds) if std < threshold]
return stable_indices

# Пример входных данных
X = [
[1.0, 0.5, 3.2],
[1.0, 0.49, 3.1],
[1.0, 0.52, 3.0],
[1.0, 0.5, 3.3],
]

print(find_stable_features(X, threshold=0.05))
# Ожидаемый результат: [0, 1]
Please open Telegram to view this post
VIEW IN TELEGRAM
👍21
➡️ Что забирает до 90% времени на созвонах и как перестать проводить их впустую

Когда митапов больше, чем решений, пора что-то менять. Мы выработали способ делать онлайн-созвоны короче, полезнее и без «а что мы вообще решили?». Делюсь, как именно.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
31
⚙️ RAG: борьба с низким качеством ответов в условия экономии памяти на GPU

В статье показали, как делали ИИ-помощника на RAG для юристов внутри компании: с какими проблемами столкнулись, как прокачивали точность ответов и экономили память на видеокартах.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
41
⚙️ Конфиденциальность мертва: Яндекс и ВК обучают ИИ на ваших личных данных?

В статье проверяют, как Yandex GPT в голосовом ассистенте ведёт себя с персональными данными. Узнают, что он сливает номер телефона и личную инфу, а потом делает вид, что ничего не знает.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2👎21😁1
⚙️ Что такое StandardScaler в Data Science и зачем он используется?

StandardScaler из библиотеки scikit-learn — это инструмент для нормализации данных. Он приводит признаки (столбцы данных) к одному масштабу со средним значением 0 и стандартным отклонением 1.

Это важно для алгоритмов машинного обучения, чувствительных к масштабу данных — например, линейной регрессии, SVM или KMeans.

➡️ Пример:

from sklearn.preprocessing import StandardScaler
import numpy as np

X = np.array([[10, 200],
[20, 300],
[30, 400]])

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

print(X_scaled)


🗣️ В этом примере значения всех признаков преобразуются так, что каждый столбец имеет среднее значение 0 и одинаковый масштаб. Это ускоряет обучение и повышает качество модели.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥32
⚙️Магистратура по ML раньше: либо сухая теоретическая нагрузка, либо практикум без базы.

Центральный университет запустил гибридную магистратуру, где занятия онлайн, но есть и живые буткемпы в Москве, причем ребятам из регионов проживание оплачивает вуз. Студенты будут работать над реальными задачами компаний под руководством экспертов индустрии: ведущих дата сайентистов, профессоров, аналитиков и главных тренеров школьной сборной России, победившей в мировой олимпиаде по ИИ в Болгарии.

📌В программе обучения: актуальные ML-инструменты, командная работа, вечерние занятия в мини-группах. Есть гранты до 75%, очный диплом и отсрочка от армии.

Начало в сентябре, заявки принимаются до 20 августа.
Please open Telegram to view this post
VIEW IN TELEGRAM
👎42🔥2👍1🐳1
👩‍💻 Разрабатываем первое AI приложение

Статья анализирует роль языка и цифровизации в накоплении и передаче знаний. Обсуждаются вызовы структурирования данных, которые, несмотря на успехи машинного обучения и реляционных баз, всё ещё затрудняют полное понимание накопленной информации.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥51
🤔 Практика: мой опыт интеграции более 50 нейронных сетей в один проект

Статья основана на полутора годах работы по внедрению нейронных сетей в веб-приложение с открытым исходным кодом. В ней собраны практические лайфхаки для решения реальных задач и преодоления сложностей, с которыми сталкиваются разработчики.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2