Data Science | Machinelearning [ru] – Telegram
Data Science | Machinelearning [ru]
20K subscribers
639 photos
40 videos
29 files
3.53K links
Все о Data Science, машинном обучении и искусственном интеллекте: от базовой теории до cutting-edge исследований и LLM.

По вопросам рекламы или разработки - @g_abashkin

РКН: https://vk.cc/cJPGXD
Download Telegram
⚙️ Как устроена Лаборатория Инноваций СИБУРа и зачем она нужна

Как применять ИИ и цифровизацию в гигантской промышленной компании с десятками заводов? Узнайте, как СИБУР реализует более 30 успешных кейсов и работает с сотнями гипотез в Лаборатории ИИ.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
32
⚙️ Что такое @staticmethod и @classmethod в Python, и чем они отличаются?

Декораторы @staticmethod и @classmethod используются для создания методов, которые не требуют экземпляра класса. @staticmethod — это метод, который не зависит от экземпляра или самого класса, а @classmethod получает доступ к самому классу через первый параметр cls.

➡️ Пример:

class MyClass:
@staticmethod
def static_method():
return "Это статический метод"

@classmethod
def class_method(cls):
return f"Это метод класса {cls.__name__}"

# Использование
print(MyClass.static_method()) # Это статический метод
print(MyClass.class_method()) # Это метод класса MyClass


🗣️ В этом примере static_method ничего не знает о классе, в то время как class_method может взаимодействовать с классом, к которому он принадлежит. Используйте их в зависимости от того, нужно ли вам взаимодействие с классом.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍2
✔️ Системы ценностей больших языковых моделей

Разбираю, как LLM умудряются обзавестись политикой, любимыми расами и списками «жертв». От первых восторгов до шока прошло меньше двух лет — теперь копаем, что внутри.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
21
🤔 Будущее LLM: 7 прогнозов на 2025 год

Что нового ждёт языковые модели в 2025 году? Обсудим прогнозы: расширение возможностей ИИ, их внедрение в бизнес и жизнь. Узнайте, чего ожидать и почему Джарвис пока останется мечтой.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
21
⚡️ Ошибки должны быть громкими

Тихие ошибки — это как протечка трубы: они долго не видны, пока не станет плохо.

👉 Совет: логируй и сигнализируй о любых неожиданных ситуациях. Лучше пусть код упадёт с понятным сообщением в деве, чем тихо сломает данные в проде.
Please open Telegram to view this post
VIEW IN TELEGRAM
8🔥3
➡️ Будущее LLM в XS, S, M и других размерах

В статье обсуждаются подходы к обучению ИИ оптимально использовать свои ресурсы: от минимальной мощности для простых задач до максимума для сложных. Разбираем концепции «я не знаю» и запросов помощи.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
31
💎Кратко про Ensemble методы с примерами

В этой статье мы рассмотрим три основных подхода: Bagging, Boosting и Stacking, и посмотрим, как их реализовать на Python.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
42
👩‍💻 Генератор случайных паролей с настройками

Напишите функцию, которая генерирует случайный пароль заданной длины. Пароль должен быть сформирован на основе пользовательских требований:

Использовать ли цифры.
Использовать ли буквы верхнего и/или нижнего регистра.
Использовать ли специальные символы.

➡️ Пример:

password = generate_password(length=12, use_digits=True, use_uppercase=True, use_lowercase=True, use_specials=False)
print(password)
# Пример вывода: A1b2C3d4E5f6


Решение задачи🔽

import random
import string

def generate_password(length, use_digits=True, use_uppercase=True, use_lowercase=True, use_specials=True):
if length < 1:
raise ValueError("Длина пароля должна быть больше 0")

# Формируем набор символов
character_pool = ""
if use_digits:
character_pool += string.digits
if use_uppercase:
character_pool += string.ascii_uppercase
if use_lowercase:
character_pool += string.ascii_lowercase
if use_specials:
character_pool += "!@#$%^&*()-_=+[]{}|;:,.<>?/"

if not character_pool:
raise ValueError("Нужно выбрать хотя бы один тип символов")

# Генерация пароля
return ''.join(random.choice(character_pool) for _ in range(length))

# Пример использования
password = generate_password(length=12, use_digits=True, use_uppercase=True, use_lowercase=True, use_specials=True)
print(password)
Please open Telegram to view this post
VIEW IN TELEGRAM
32
👨‍💻Хранилища данных. Обзор технологий и подходов к проектированию

В этой статье будут рассмотрены основные подходы к проектированию архитектуры хранилищ данных (DWH), эволюция архитектур, взаимосвязь Data Lake, Data Factory, Data Lakehouse, Data Mesh c DWH, преимущества и недостатки подходов к моделированию данных.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
2👍1🔥1
👩‍💻 Задачка по Python

Напишите функцию, которая принимает список email-адресов и возвращает уникальные домены из этого списка. Домен — это часть адреса после символа @.

➡️ Пример:

["user1@example.com", "user2@test.com", "user3@example.com", "user4@sample.com"]

#{"example.com", "test.com", "sample.com"}


Решение задачи ⬇️

def get_unique_domains(emails):
domains = {email.split('@')[1] for email in emails}
return domains

# Пример использования:
emails = ["
user1@example.com", "user2@test.com", "user3@example.com", "user4@sample.com"]
result = get_unique_domains(emails)
print(result) # Ожидаемый результат: {'
example.com', 'test.com', 'sample.com'}
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍21
🔧 ТОП-10 опенсорсных инструментов для работы с ИИ в 2025 году

Детальный разбор 10 самых перспективных инструментов для работы с ИИ в 2025 году. От создания умных ассистентов до построения мощных RAG-систем — разбираем возможности, сравниваем производительность, безопасность и простоту интеграции каждого решения.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3👎21👍1
⚙️ Что такое PCA (Principal Component Analysis) в машинном обучении и зачем он используется?

PCA — это метод снижения размерности, который преобразует исходные переменные в новый набор переменных (компонент), сохраняя как можно больше информации. Он помогает ускорить обучение моделей и уменьшить переобучение.

➡️ Пример:

import numpy as np
from sklearn.decomposition import PCA
from sklearn.datasets import load_iris

# Загрузка данных
data = load_iris()
X = data.data

# Применение PCA для снижения размерности до 2 компонент
pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)

print(X_pca[:5]) # Преобразованные данные


🗣️ В этом примере PCA снижает размерность данных Iris с 4 до 2 компонент. Это позволяет визуализировать данные и ускорить работу моделей, сохраняя основную информацию.


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
👍621
👀 Отечественные Open Source-инструменты для ИИ-разработки

Покажу, как Open Source меняет ИИ: от библиотек и моделей до датасетов. Разберём, как открытый код помогает строить, обучать и тестировать системы без барьеров и закрытых лицензий.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
41👎1😁1
🧱 MCP — новый кирпичик в фундаменте AI-разработки

Расскажу, как MCP меняет работу IDE: LLM напрямую ходят в базы и сервисы, без костылей и отдельных тулов. Немного истории, сравнение с LSP и разбор, зачем это нужно девелоперам.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
42
📉 RL-агент для алгоритмической торговли на Binance Futures: архитектура, бэктест, результаты

В статье собираю торгового агента на Dueling Double DQN с приоритетным реплеем. Тестирую на Binance Futures с учётом комиссий и проскальзывания, чтобы PnL выглядел как в реальной торговле.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥101
👩‍💻 Задачка по Python

Напишите скрипт, который удаляет дублирующиеся строки из CSV-файла на основе указанного столбца и сохраняет результат в новый файл.

➡️ Пример:

python remove_duplicates.py input.csv output.csv column_name
id,name,age
1,John,30
2,Jane,25
4,Bob,35


Решение задачи ⬇️

import pandas as pd
import sys

if len(sys.argv) < 4:
print("Использование: python remove_duplicates.py <input_file> <output_file> <column_name>")
sys.exit(1)

input_file = sys.argv[1]
output_file = sys.argv[2]
column_name = sys.argv[3]

try:
df = pd.read_csv(input_file)
df = df.drop_duplicates(subset=[column_name])
df.to_csv(output_file, index=False)
print(f"Дубликаты удалены. Результат сохранён в {output_file}")
except Exception as e:
print(f"Ошибка: {e}")
Please open Telegram to view this post
VIEW IN TELEGRAM
52😁1
🔝 Топ-5 бесплатных AI-сервисов для генерации 3D-моделей

Я протестил 5 AI-сервисов для генерации 3D-моделей — без навыков и софта. Закинул туда героев детства и теперь знаю: быть 3D-дизайнером — не боль, а фан. Модели вышли… ну, сами увидите.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
3
🔝 Как мы учимся решать одну из самых сложных задач в метеорологии — прогнозирование количества осадков по часам

Покажу, как мы в Яндекс Погоде боремся с самой ускользающей частью прогноза — осадками. Расскажу, почему всё сложно, как меняем модели и почему теперь гроза не застанет врасплох.

Читать...
Please open Telegram to view this post
VIEW IN TELEGRAM
41
🧠 Компании уходят от пилотов к продуктиву

В беседе Роман Стятюгин пояснил: VK Predict — это команда более ста специалистов. Решения выпускают в двух форматах: модели по API и продукты с интерфейсом для бизнес-пользователей, включая дашборды, тепловые карты и чат-боты на LLM.

Среди сервисов: «Рейтинг» для прогнозирования признаков аудитории, «Телеком Радар», которым пользуются три из четырех крупнейших операторов, «ГеоКурсор» с гравитационными моделями, «Девелопер» для квартирографии, платформа Predict AutoML и AI Persona для персонализации коммуникаций.

Читать интервью
Please open Telegram to view this post
VIEW IN TELEGRAM
61🔥1😁1