This media is not supported in your browser
VIEW IN TELEGRAM
PyTorch3D v0.4.0 released with support for implicit functions, volume rendering and a reimplementation of NeRF.
И сразу вдогонку еще одна статья про применение дифференцируемого рендера для регистрации облаков точек с RGB-D сенсора.
* github
* project page
#differentiable_rendering #indoor
* github
* project page
Aligning partial views of a scene into a single whole is essential to understanding one's environment and is a key component of numerous robotics tasks such as SLAM and SfM. Recent approaches have proposed end-to-end systems that can outperform traditional methods by leveraging pose supervision. However, with the rising prevalence of cameras with depth sensors, we can expect a new stream of raw RGB-D data without the annotations needed for supervision. We propose UnsupervisedR&R: an end-to-end unsupervised approach to learning point cloud registration from raw RGB-D video. The key idea is to leverage differentiable alignment and rendering to enforce photometric and geometric consistency between frames.#differentiable_rendering #indoor
Forwarded from Unsolicited Disclosures
"Moscow never sleeps"
Advadnoun сделал colab notebook (https://colab.research.google.com/drive/1Q-TbYvASMPRMXCOQjkxxf72CXYjR_8Vp), где декодер от DALL-E используется для синтеза изображений из латентного вектора, который оптимизируется CLIP по критерию текстового промпта. Можно дать на вход текст и поэкспериментировать.
Advadnoun сделал colab notebook (https://colab.research.google.com/drive/1Q-TbYvASMPRMXCOQjkxxf72CXYjR_8Vp), где декодер от DALL-E используется для синтеза изображений из латентного вектора, который оптимизируется CLIP по критерию текстового промпта. Можно дать на вход текст и поэкспериментировать.
Memo запилил пост на тему eco-friendly cryptoArt с подробным введением в тему.
* твитор
* пост на гитхабе
#nft
* твитор
* пост на гитхабе
#nft
Twitter
MΞMO AKTEN
Many folks been asking me if there is a way to do NFTs w/o such a vast carbon footprint. So I've collected information from many contributors in this WIP doc. TLDR: Yes, 100s times more efficient is possible, even today. (But there are some drawbacks rn)…
IBRNet: Learning Multi-View Image-Based Rendering
* paper
* project page
* code
1. https://alexyu.net/pixelnerf/
2. https://github.com/alextrevithick/GRF
#nerf
* paper
* project page
* code
Unlike neural scene representation work that optimizes per-scene functions for rendering, we learn a generic view interpolation function that generalizes to novel scenes. We render images using classic volume rendering, which is fully differentiable and allows us to train using only multi-view posed images as supervision. Experiments show that our method outperforms recent novel view synthesis methods that also seek to generalize to novel scenes. Further, if fine-tuned on each scene, our method is competitive with state-of-the-art single-scene neural rendering methods.
Related works1. https://alexyu.net/pixelnerf/
2. https://github.com/alextrevithick/GRF
#nerf
This media is not supported in your browser
VIEW IN TELEGRAM
D-NeRF: Neural Radiance Fields for Dynamic Scenes
* project page
* paper
* no code yet
* project page
* paper
* no code yet
We propose D-NeRF, a method for synthesizing novel views, at an arbitrary point in time, of dynamic scenes with complex non-rigid geometries. We optimize an underlying deformable volumetric function from a sparse set of input monocular views without the need of ground-truth geometry nor multi-view images.
#nerf
echoinside
https://twitter.com/digitman_/status/1364521870557609984
Попробовала адаптировать этот ноутбук к лицам людей.
Сетап очень простой — параметрическая голова человека без текстуры и даже глазных яблок. Параметрическую голову можно взять тут или тут.
Оптимизация была сделана с текстурой. Интересный момент, что многие детали меша на картинке появляются именно за счет текстуры с такой оптимизацией, при этом сам меш меняется не сильно. Если же оптимизировать только меш, то результаты на нем заметнее.
Сетап очень простой — параметрическая голова человека без текстуры и даже глазных яблок. Параметрическую голову можно взять тут или тут.
Оптимизация была сделана с текстурой. Интересный момент, что многие детали меша на картинке появляются именно за счет текстуры с такой оптимизацией, при этом сам меш меняется не сильно. Если же оптимизировать только меш, то результаты на нем заметнее.
This media is not supported in your browser
VIEW IN TELEGRAM
Тема не новая, но применение 3d photo inpainting к генеративным картинкам выглядит прикольно
This media is not supported in your browser
VIEW IN TELEGRAM
Neural 3D Video Synthesis
[Facebook Reality Labs]
* Project page
* Paper
[Facebook Reality Labs]
* Project page
* Paper
We propose a novel approach for 3D video synthesis that is able to represent multi-view video recordings of a dynamic real-world scene in a compact, yet expressive representation that enables high-quality view synthesis and motion interpolation. Our approach takes the high quality and compactness of static neural radiance fields in a new direction: to a model-free, dynamic setting. At the core of our approach is a novel time-conditioned neural radiance fields that represents scene dynamics using a set of compact latent codes.
Our learned representation is highly compact and able to represent a 10 second 30 FPS multi-view video recording by 18 cameras with a model size of just 28MB. We demonstrate that our method can render high-fidelity wide-angle novel views at over 1K resolution, even for highly complex and dynamic scenes.
#nerf #video #3d #novel_viewThis media is not supported in your browser
VIEW IN TELEGRAM
Neural Geometric Level of Detail:
Real-time Rendering with Implicit 3D Surfaces
[Nvidia]
Real-time rendering of high quality neural 3d SDFs with a sparse octree feature volume and a tiny MLP. 🔥
* Project page
* Paper
* twitter
#implicit_geometry #LOD #octree #sdf #real_time #3d
Real-time Rendering with Implicit 3D Surfaces
[Nvidia]
Real-time rendering of high quality neural 3d SDFs with a sparse octree feature volume and a tiny MLP. 🔥
* Project page
* Paper
#implicit_geometry #LOD #octree #sdf #real_time #3d
Multimodal Neurons in Artificial Neural Networks
https://distill.pub/2021/multimodal-neurons/
Yannic's drop: https://youtu.be/Z_kWZpgEZ7w
https://distill.pub/2021/multimodal-neurons/
Yannic's drop: https://youtu.be/Z_kWZpgEZ7w
Forwarded from Литий и стенания
The latest generation of adversarial image attacks is, uh, somewhat simpler to carry out
https://openai.com/blog/multimodal-neurons/
https://twitter.com/moyix/status/1367575109305794563/photo/1
https://openai.com/blog/multimodal-neurons/
https://twitter.com/moyix/status/1367575109305794563/photo/1
Tensorflow & PyTorch теперь поддерживают AMD
https://hub.docker.com/r/rocm/pytorch
https://hub.docker.com/r/rocm/tensorflow
#tools
https://hub.docker.com/r/rocm/pytorch
https://hub.docker.com/r/rocm/tensorflow
#tools
Forwarded from Метаверсище и ИИще
Пока без комментариев.
Гляньте на ночь.
Генеративный контент в 3д.
ИИ, создающий миры под запрос.
https://youtu.be/hA0MsGWvmzs
Гляньте на ночь.
Генеративный контент в 3д.
ИИ, создающий миры под запрос.
https://youtu.be/hA0MsGWvmzs
YouTube
Promethean AI Keynote
Hope you enjoy this first extensive look at Promethean AI technology!
00:00 - Exterior building demo
04:57 - Introduction
07:23 - Level 1: Comprehension
10:47 - Level 2: Discovery
12:13 - Level 3/4: Suggestion/Composition
14:06 - Level 5: Transportation…
00:00 - Exterior building demo
04:57 - Introduction
07:23 - Level 1: Comprehension
10:47 - Level 2: Discovery
12:13 - Level 3/4: Suggestion/Composition
14:06 - Level 5: Transportation…