Forwarded from Artificial Intelligence
How do you start AI and ML ?
Where do you go to learn these skills? What courses are the best?
There’s no best answer🥺. Everyone’s path will be different. Some people learn better with books, others learn better through videos.
What’s more important than how you start is why you start.
Start with why.
Why do you want to learn these skills?
Do you want to make money?
Do you want to build things?
Do you want to make a difference?
Again, no right reason. All are valid in their own way.
Start with why because having a why is more important than how. Having a why means when it gets hard and it will get hard, you’ve got something to turn to. Something to remind you why you started.
Got a why? Good. Time for some hard skills.
I can only recommend what I’ve tried every week new course lauch better than others its difficult to recommend any course
You can completed courses from (in order):
Treehouse / youtube( free) - Introduction to Python
Udacity - Deep Learning & AI Nanodegree
fast.ai - Part 1and Part 2
They’re all world class. I’m a visual learner. I learn better seeing things being done/explained to me on. So all of these courses reflect that.
If you’re an absolute beginner, start with some introductory Python courses and when you’re a bit more confident, move into data science, machine learning and AI.
Join for more: https://news.1rj.ru/str/machinelearning_deeplearning
👉Telegram Link: https://news.1rj.ru/str/addlist/ID95piZJZa0wYzk5
Like for more ❤️
All the best 👍👍
Where do you go to learn these skills? What courses are the best?
There’s no best answer🥺. Everyone’s path will be different. Some people learn better with books, others learn better through videos.
What’s more important than how you start is why you start.
Start with why.
Why do you want to learn these skills?
Do you want to make money?
Do you want to build things?
Do you want to make a difference?
Again, no right reason. All are valid in their own way.
Start with why because having a why is more important than how. Having a why means when it gets hard and it will get hard, you’ve got something to turn to. Something to remind you why you started.
Got a why? Good. Time for some hard skills.
I can only recommend what I’ve tried every week new course lauch better than others its difficult to recommend any course
You can completed courses from (in order):
Treehouse / youtube( free) - Introduction to Python
Udacity - Deep Learning & AI Nanodegree
fast.ai - Part 1and Part 2
They’re all world class. I’m a visual learner. I learn better seeing things being done/explained to me on. So all of these courses reflect that.
If you’re an absolute beginner, start with some introductory Python courses and when you’re a bit more confident, move into data science, machine learning and AI.
Join for more: https://news.1rj.ru/str/machinelearning_deeplearning
👉Telegram Link: https://news.1rj.ru/str/addlist/ID95piZJZa0wYzk5
Like for more ❤️
All the best 👍👍
👍4❤1
Future Trends in Artificial Intelligence 👇👇
1. AI in healthcare: With the increasing demand for personalized medicine and precision healthcare, AI is expected to play a crucial role in analyzing large amounts of medical data to diagnose diseases, develop treatment plans, and predict patient outcomes.
2. AI in finance: AI-powered solutions are expected to revolutionize the financial industry by improving fraud detection, risk assessment, and customer service. Robo-advisors and algorithmic trading are also likely to become more prevalent.
3. AI in autonomous vehicles: The development of self-driving cars and other autonomous vehicles will rely heavily on AI technologies such as computer vision, natural language processing, and machine learning to navigate and make decisions in real-time.
4. AI in manufacturing: The use of AI and robotics in manufacturing processes is expected to increase efficiency, reduce errors, and enable the automation of complex tasks.
5. AI in customer service: Chatbots and virtual assistants powered by AI are anticipated to become more sophisticated, providing personalized and efficient customer support across various industries.
6. AI in agriculture: AI technologies can be used to optimize crop yields, monitor plant health, and automate farming processes, contributing to sustainable and efficient agricultural practices.
7. AI in cybersecurity: As cyber threats continue to evolve, AI-powered solutions will be crucial for detecting and responding to security breaches in real-time, as well as predicting and preventing future attacks.
Like for more ❤️
Artificial Intelligence
1. AI in healthcare: With the increasing demand for personalized medicine and precision healthcare, AI is expected to play a crucial role in analyzing large amounts of medical data to diagnose diseases, develop treatment plans, and predict patient outcomes.
2. AI in finance: AI-powered solutions are expected to revolutionize the financial industry by improving fraud detection, risk assessment, and customer service. Robo-advisors and algorithmic trading are also likely to become more prevalent.
3. AI in autonomous vehicles: The development of self-driving cars and other autonomous vehicles will rely heavily on AI technologies such as computer vision, natural language processing, and machine learning to navigate and make decisions in real-time.
4. AI in manufacturing: The use of AI and robotics in manufacturing processes is expected to increase efficiency, reduce errors, and enable the automation of complex tasks.
5. AI in customer service: Chatbots and virtual assistants powered by AI are anticipated to become more sophisticated, providing personalized and efficient customer support across various industries.
6. AI in agriculture: AI technologies can be used to optimize crop yields, monitor plant health, and automate farming processes, contributing to sustainable and efficient agricultural practices.
7. AI in cybersecurity: As cyber threats continue to evolve, AI-powered solutions will be crucial for detecting and responding to security breaches in real-time, as well as predicting and preventing future attacks.
Like for more ❤️
Artificial Intelligence
❤4👍4
Guide to Building an AI Agent
1️⃣ 𝗖𝗵𝗼𝗼𝘀𝗲 𝘁𝗵𝗲 𝗥𝗶𝗴𝗵𝘁 𝗟𝗟𝗠
Not all LLMs are equal. Pick one that:
- Excels in reasoning benchmarks
- Supports chain-of-thought (CoT) prompting
- Delivers consistent responses
📌 Tip: Experiment with models & fine-tune prompts to enhance reasoning.
2️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁’𝘀 𝗖𝗼𝗻𝘁𝗿𝗼𝗹 𝗟𝗼𝗴𝗶𝗰
Your agent needs a strategy:
- Tool Use: Call tools when needed; otherwise, respond directly.
- Basic Reflection: Generate, critique, and refine responses.
- ReAct: Plan, execute, observe, and iterate.
- Plan-then-Execute: Outline all steps first, then execute.
📌 Choosing the right approach improves reasoning & reliability.
3️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝗖𝗼𝗿𝗲 𝗜𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗼𝗻𝘀 & 𝗙𝗲𝗮𝘁𝘂𝗿𝗲𝘀
Set operational rules:
- How to handle unclear queries? (Ask clarifying questions)
- When to use external tools?
- Formatting rules? (Markdown, JSON, etc.)
- Interaction style?
📌 Clear system prompts shape agent behavior.
4️⃣ 𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁 𝗮 𝗠𝗲𝗺𝗼𝗿𝘆 𝗦𝘁𝗿𝗮𝘁𝗲𝗴𝘆
LLMs forget past interactions. Memory strategies:
- Sliding Window: Retain recent turns, discard old ones.
- Summarized Memory: Condense key points for recall.
- Long-Term Memory: Store user preferences for personalization.
📌 Example: A financial AI recalls risk tolerance from past chats.
5️⃣ 𝗘𝗾𝘂𝗶𝗽 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁 𝘄𝗶𝘁𝗵 𝗧𝗼𝗼𝗹𝘀 & 𝗔𝗣𝗜𝘀
Extend capabilities with external tools:
- Name: Clear, intuitive (e.g., "StockPriceRetriever")
- Denoscription: What does it do?
- Schemas: Define input/output formats
- Error Handling: How to manage failures?
📌 Example: A support AI retrieves order details via CRM API.
6️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁’𝘀 𝗥𝗼𝗹𝗲 & 𝗞𝗲𝘆 𝗧𝗮𝘀𝗸𝘀
Narrowly defined agents perform better. Clarify:
- Mission: (e.g., "I analyze datasets for insights.")
- Key Tasks: (Summarizing, visualizing, analyzing)
- Limitations: ("I don’t offer legal advice.")
📌 Example: A financial AI focuses on finance, not general knowledge.
7️⃣ 𝗛𝗮𝗻𝗱𝗹𝗶𝗻𝗴 𝗥𝗮𝘄 𝗟𝗟𝗠 𝗢𝘂𝘁𝗽𝘂𝘁𝘀
Post-process responses for structure & accuracy:
- Convert AI output to structured formats (JSON, tables)
- Validate correctness before user delivery
- Ensure correct tool execution
📌 Example: A financial AI converts extracted data into JSON.
8️⃣ 𝗦𝗰𝗮𝗹𝗶𝗻𝗴 𝘁𝗼 𝗠𝘂𝗹𝘁𝗶-𝗔𝗴𝗲𝗻𝘁 𝗦𝘆𝘀𝘁𝗲𝗺𝘀 (𝗔𝗱𝘃𝗮𝗻𝗰𝗲𝗱)
For complex workflows:
- Info Sharing: What context is passed between agents?
- Error Handling: What if one agent fails?
- State Management: How to pause/resume tasks?
📌 Example:
1️⃣ One agent fetches data
2️⃣ Another summarizes
3️⃣ A third generates a report
Master the fundamentals, experiment, and refine and.. now go build something amazing!
1️⃣ 𝗖𝗵𝗼𝗼𝘀𝗲 𝘁𝗵𝗲 𝗥𝗶𝗴𝗵𝘁 𝗟𝗟𝗠
Not all LLMs are equal. Pick one that:
- Excels in reasoning benchmarks
- Supports chain-of-thought (CoT) prompting
- Delivers consistent responses
📌 Tip: Experiment with models & fine-tune prompts to enhance reasoning.
2️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁’𝘀 𝗖𝗼𝗻𝘁𝗿𝗼𝗹 𝗟𝗼𝗴𝗶𝗰
Your agent needs a strategy:
- Tool Use: Call tools when needed; otherwise, respond directly.
- Basic Reflection: Generate, critique, and refine responses.
- ReAct: Plan, execute, observe, and iterate.
- Plan-then-Execute: Outline all steps first, then execute.
📌 Choosing the right approach improves reasoning & reliability.
3️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝗖𝗼𝗿𝗲 𝗜𝗻𝘀𝘁𝗿𝘂𝗰𝘁𝗶𝗼𝗻𝘀 & 𝗙𝗲𝗮𝘁𝘂𝗿𝗲𝘀
Set operational rules:
- How to handle unclear queries? (Ask clarifying questions)
- When to use external tools?
- Formatting rules? (Markdown, JSON, etc.)
- Interaction style?
📌 Clear system prompts shape agent behavior.
4️⃣ 𝗜𝗺𝗽𝗹𝗲𝗺𝗲𝗻𝘁 𝗮 𝗠𝗲𝗺𝗼𝗿𝘆 𝗦𝘁𝗿𝗮𝘁𝗲𝗴𝘆
LLMs forget past interactions. Memory strategies:
- Sliding Window: Retain recent turns, discard old ones.
- Summarized Memory: Condense key points for recall.
- Long-Term Memory: Store user preferences for personalization.
📌 Example: A financial AI recalls risk tolerance from past chats.
5️⃣ 𝗘𝗾𝘂𝗶𝗽 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁 𝘄𝗶𝘁𝗵 𝗧𝗼𝗼𝗹𝘀 & 𝗔𝗣𝗜𝘀
Extend capabilities with external tools:
- Name: Clear, intuitive (e.g., "StockPriceRetriever")
- Denoscription: What does it do?
- Schemas: Define input/output formats
- Error Handling: How to manage failures?
📌 Example: A support AI retrieves order details via CRM API.
6️⃣ 𝗗𝗲𝗳𝗶𝗻𝗲 𝘁𝗵𝗲 𝗔𝗴𝗲𝗻𝘁’𝘀 𝗥𝗼𝗹𝗲 & 𝗞𝗲𝘆 𝗧𝗮𝘀𝗸𝘀
Narrowly defined agents perform better. Clarify:
- Mission: (e.g., "I analyze datasets for insights.")
- Key Tasks: (Summarizing, visualizing, analyzing)
- Limitations: ("I don’t offer legal advice.")
📌 Example: A financial AI focuses on finance, not general knowledge.
7️⃣ 𝗛𝗮𝗻𝗱𝗹𝗶𝗻𝗴 𝗥𝗮𝘄 𝗟𝗟𝗠 𝗢𝘂𝘁𝗽𝘂𝘁𝘀
Post-process responses for structure & accuracy:
- Convert AI output to structured formats (JSON, tables)
- Validate correctness before user delivery
- Ensure correct tool execution
📌 Example: A financial AI converts extracted data into JSON.
8️⃣ 𝗦𝗰𝗮𝗹𝗶𝗻𝗴 𝘁𝗼 𝗠𝘂𝗹𝘁𝗶-𝗔𝗴𝗲𝗻𝘁 𝗦𝘆𝘀𝘁𝗲𝗺𝘀 (𝗔𝗱𝘃𝗮𝗻𝗰𝗲𝗱)
For complex workflows:
- Info Sharing: What context is passed between agents?
- Error Handling: What if one agent fails?
- State Management: How to pause/resume tasks?
📌 Example:
1️⃣ One agent fetches data
2️⃣ Another summarizes
3️⃣ A third generates a report
Master the fundamentals, experiment, and refine and.. now go build something amazing!
❤2👍2
Forwarded from Artificial Intelligence
𝐇𝐨𝐰 𝐭𝐨 𝐁𝐞𝐠𝐢𝐧 𝐋𝐞𝐚𝐫𝐧𝐢𝐧𝐠 𝐀𝐈 𝐀𝐠𝐞𝐧𝐭𝐬
🔹 𝐋𝐞𝐯𝐞𝐥 𝟏: 𝐅𝐨𝐮𝐧𝐝𝐚𝐭𝐢𝐨𝐧𝐬 𝐨𝐟 𝐆𝐞𝐧𝐀𝐈 𝐚𝐧𝐝 𝐑𝐀𝐆
▪️ Introduction to Generative AI (GenAI): Understand the basics of Generative AI, its key use cases, and why it's important in modern AI development.
▪️ Large Language Models (LLMs): Learn the core principles of large-scale language models like GPT, LLaMA, or PaLM, focusing on their architecture and real-world applications.
▪️ Prompt Engineering Fundamentals: Explore how to design and refine prompts to achieve specific results from LLMs.
▪️ Data Handling and Processing: Gain insights into data cleaning, transformation, and preparation techniques crucial for AI-driven tasks.
🔹 𝐋𝐞𝐯𝐞𝐥 𝟐: 𝐀𝐝𝐯𝐚𝐧𝐜𝐞𝐝 𝐂𝐨𝐧𝐜𝐞𝐩𝐭𝐬 𝐢𝐧 𝐀𝐈 𝐀𝐠𝐞𝐧𝐭𝐬
▪️ API Integration for AI Models: Learn how to interact with AI models through APIs, making it easier to integrate them into various applications.
▪️ Understanding Retrieval-Augmented Generation (RAG): Discover how to enhance LLM performance by leveraging external data for more informed outputs.
▪️ Introduction to AI Agents: Get an overview of AI agents—autonomous entities that use AI to perform tasks or solve problems.
▪️ Agentic Frameworks: Explore popular tools like LangChain or OpenAI’s API to build and manage AI agents.
▪️ Creating Simple AI Agents: Apply your foundational knowledge to construct a basic AI agent.
▪️ Agentic Workflow Overview: Understand how AI agents operate, focusing on planning, execution, and feedback loops.
▪️ Agentic Memory: Learn how agents retain context across interactions to improve performance and consistency.
▪️ Evaluating AI Agents: Explore methods for assessing and improving the performance of AI agents.
▪️ Multi-Agent Collaboration: Delve into how multiple agents can collaborate to solve complex problems efficiently.
▪️ Agentic RAG: Learn how to integrate Retrieval-Augmented Generation techniques within AI agents, enhancing their ability to use external data sources effectively.
Join for more AI Resources: https://news.1rj.ru/str/machinelearning_deeplearning
🔹 𝐋𝐞𝐯𝐞𝐥 𝟏: 𝐅𝐨𝐮𝐧𝐝𝐚𝐭𝐢𝐨𝐧𝐬 𝐨𝐟 𝐆𝐞𝐧𝐀𝐈 𝐚𝐧𝐝 𝐑𝐀𝐆
▪️ Introduction to Generative AI (GenAI): Understand the basics of Generative AI, its key use cases, and why it's important in modern AI development.
▪️ Large Language Models (LLMs): Learn the core principles of large-scale language models like GPT, LLaMA, or PaLM, focusing on their architecture and real-world applications.
▪️ Prompt Engineering Fundamentals: Explore how to design and refine prompts to achieve specific results from LLMs.
▪️ Data Handling and Processing: Gain insights into data cleaning, transformation, and preparation techniques crucial for AI-driven tasks.
🔹 𝐋𝐞𝐯𝐞𝐥 𝟐: 𝐀𝐝𝐯𝐚𝐧𝐜𝐞𝐝 𝐂𝐨𝐧𝐜𝐞𝐩𝐭𝐬 𝐢𝐧 𝐀𝐈 𝐀𝐠𝐞𝐧𝐭𝐬
▪️ API Integration for AI Models: Learn how to interact with AI models through APIs, making it easier to integrate them into various applications.
▪️ Understanding Retrieval-Augmented Generation (RAG): Discover how to enhance LLM performance by leveraging external data for more informed outputs.
▪️ Introduction to AI Agents: Get an overview of AI agents—autonomous entities that use AI to perform tasks or solve problems.
▪️ Agentic Frameworks: Explore popular tools like LangChain or OpenAI’s API to build and manage AI agents.
▪️ Creating Simple AI Agents: Apply your foundational knowledge to construct a basic AI agent.
▪️ Agentic Workflow Overview: Understand how AI agents operate, focusing on planning, execution, and feedback loops.
▪️ Agentic Memory: Learn how agents retain context across interactions to improve performance and consistency.
▪️ Evaluating AI Agents: Explore methods for assessing and improving the performance of AI agents.
▪️ Multi-Agent Collaboration: Delve into how multiple agents can collaborate to solve complex problems efficiently.
▪️ Agentic RAG: Learn how to integrate Retrieval-Augmented Generation techniques within AI agents, enhancing their ability to use external data sources effectively.
Join for more AI Resources: https://news.1rj.ru/str/machinelearning_deeplearning
Some helpful Data science projects for beginners
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
BEST RESOURCES TO LEARN DATA SCIENCE AND MACHINE LEARNING FOR FREE
https://developers.google.com/machine-learning/crash-course
https://www.kaggle.com/learn/overview
https://forums.fast.ai/t/recommended-python-learning-resources/26888
https://www.fast.ai/
https://imp.i115008.net/JrBjZR
https://ern.li/OP/1qvkxbfaxqj
Join @datasciencefun for more free resources
ENJOY LEARNING 👍👍
https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://www.kaggle.com/c/digit-recognizer
https://www.kaggle.com/c/titanic
BEST RESOURCES TO LEARN DATA SCIENCE AND MACHINE LEARNING FOR FREE
https://developers.google.com/machine-learning/crash-course
https://www.kaggle.com/learn/overview
https://forums.fast.ai/t/recommended-python-learning-resources/26888
https://www.fast.ai/
https://imp.i115008.net/JrBjZR
https://ern.li/OP/1qvkxbfaxqj
Join @datasciencefun for more free resources
ENJOY LEARNING 👍👍
👍4
Future Trends in Artificial Intelligence 👇👇
1. AI in healthcare: With the increasing demand for personalized medicine and precision healthcare, AI is expected to play a crucial role in analyzing large amounts of medical data to diagnose diseases, develop treatment plans, and predict patient outcomes.
2. AI in finance: AI-powered solutions are expected to revolutionize the financial industry by improving fraud detection, risk assessment, and customer service. Robo-advisors and algorithmic trading are also likely to become more prevalent.
3. AI in autonomous vehicles: The development of self-driving cars and other autonomous vehicles will rely heavily on AI technologies such as computer vision, natural language processing, and machine learning to navigate and make decisions in real-time.
4. AI in manufacturing: The use of AI and robotics in manufacturing processes is expected to increase efficiency, reduce errors, and enable the automation of complex tasks.
5. AI in customer service: Chatbots and virtual assistants powered by AI are anticipated to become more sophisticated, providing personalized and efficient customer support across various industries.
6. AI in agriculture: AI technologies can be used to optimize crop yields, monitor plant health, and automate farming processes, contributing to sustainable and efficient agricultural practices.
7. AI in cybersecurity: As cyber threats continue to evolve, AI-powered solutions will be crucial for detecting and responding to security breaches in real-time, as well as predicting and preventing future attacks.
1. AI in healthcare: With the increasing demand for personalized medicine and precision healthcare, AI is expected to play a crucial role in analyzing large amounts of medical data to diagnose diseases, develop treatment plans, and predict patient outcomes.
2. AI in finance: AI-powered solutions are expected to revolutionize the financial industry by improving fraud detection, risk assessment, and customer service. Robo-advisors and algorithmic trading are also likely to become more prevalent.
3. AI in autonomous vehicles: The development of self-driving cars and other autonomous vehicles will rely heavily on AI technologies such as computer vision, natural language processing, and machine learning to navigate and make decisions in real-time.
4. AI in manufacturing: The use of AI and robotics in manufacturing processes is expected to increase efficiency, reduce errors, and enable the automation of complex tasks.
5. AI in customer service: Chatbots and virtual assistants powered by AI are anticipated to become more sophisticated, providing personalized and efficient customer support across various industries.
6. AI in agriculture: AI technologies can be used to optimize crop yields, monitor plant health, and automate farming processes, contributing to sustainable and efficient agricultural practices.
7. AI in cybersecurity: As cyber threats continue to evolve, AI-powered solutions will be crucial for detecting and responding to security breaches in real-time, as well as predicting and preventing future attacks.
👍1🔥1
Important questions to ace your machine learning interview with an approach to answer:
1. Machine Learning Project Lifecycle:
- Define the problem
- Gather and preprocess data
- Choose a model and train it
- Evaluate model performance
- Tune and optimize the model
- Deploy and maintain the model
2. Supervised vs Unsupervised Learning:
- Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
- Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).
3. Evaluation Metrics for Regression:
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-squared (coefficient of determination)
4. Overfitting and Prevention:
- Overfitting: Model learns the noise instead of the underlying pattern.
- Prevention: Use simpler models, cross-validation, regularization.
5. Bias-Variance Tradeoff:
- Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.
6. Cross-Validation:
- Technique to assess model performance by splitting data into multiple subsets for training and validation.
7. Feature Selection Techniques:
- Filter methods (e.g., correlation analysis)
- Wrapper methods (e.g., recursive feature elimination)
- Embedded methods (e.g., Lasso regularization)
8. Assumptions of Linear Regression:
- Linearity
- Independence of errors
- Homoscedasticity (constant variance)
- No multicollinearity
9. Regularization in Linear Models:
- Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.
10. Classification vs Regression:
- Classification: Predicts a categorical outcome (e.g., class labels).
- Regression: Predicts a continuous numerical outcome (e.g., house price).
11. Dimensionality Reduction Algorithms:
- Principal Component Analysis (PCA)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
12. Decision Tree:
- Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.
13. Ensemble Methods:
- Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).
14. Handling Missing or Corrupted Data:
- Imputation (e.g., mean substitution)
- Removing rows or columns with missing data
- Using algorithms robust to missing values
15. Kernels in Support Vector Machines (SVM):
- Linear kernel
- Polynomial kernel
- Radial Basis Function (RBF) kernel
1. Machine Learning Project Lifecycle:
- Define the problem
- Gather and preprocess data
- Choose a model and train it
- Evaluate model performance
- Tune and optimize the model
- Deploy and maintain the model
2. Supervised vs Unsupervised Learning:
- Supervised Learning: Uses labeled data for training (e.g., predicting house prices from features).
- Unsupervised Learning: Uses unlabeled data to find patterns or groupings (e.g., clustering customer segments).
3. Evaluation Metrics for Regression:
- Mean Absolute Error (MAE)
- Mean Squared Error (MSE)
- Root Mean Squared Error (RMSE)
- R-squared (coefficient of determination)
4. Overfitting and Prevention:
- Overfitting: Model learns the noise instead of the underlying pattern.
- Prevention: Use simpler models, cross-validation, regularization.
5. Bias-Variance Tradeoff:
- Balancing error due to bias (underfitting) and variance (overfitting) to find an optimal model complexity.
6. Cross-Validation:
- Technique to assess model performance by splitting data into multiple subsets for training and validation.
7. Feature Selection Techniques:
- Filter methods (e.g., correlation analysis)
- Wrapper methods (e.g., recursive feature elimination)
- Embedded methods (e.g., Lasso regularization)
8. Assumptions of Linear Regression:
- Linearity
- Independence of errors
- Homoscedasticity (constant variance)
- No multicollinearity
9. Regularization in Linear Models:
- Adds a penalty term to the loss function to prevent overfitting by shrinking coefficients.
10. Classification vs Regression:
- Classification: Predicts a categorical outcome (e.g., class labels).
- Regression: Predicts a continuous numerical outcome (e.g., house price).
11. Dimensionality Reduction Algorithms:
- Principal Component Analysis (PCA)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
12. Decision Tree:
- Tree-like model where internal nodes represent features, branches represent decisions, and leaf nodes represent outcomes.
13. Ensemble Methods:
- Combine predictions from multiple models to improve accuracy (e.g., Random Forest, Gradient Boosting).
14. Handling Missing or Corrupted Data:
- Imputation (e.g., mean substitution)
- Removing rows or columns with missing data
- Using algorithms robust to missing values
15. Kernels in Support Vector Machines (SVM):
- Linear kernel
- Polynomial kernel
- Radial Basis Function (RBF) kernel
👍7❤1