Generative AI – Telegram
Generative AI
26.5K subscribers
493 photos
3 videos
82 files
269 links
Welcome to Generative AI
👨‍💻 Join us to understand and use the tech
👩‍💻 Learn how to use Open AI & Chatgpt
🤖 The REAL No.1 AI Community

Admin: @coderfun

Buy ads: https://telega.io/c/generativeai_gpt
Download Telegram
If you want to get a job as a machine learning engineer, don’t start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.

Yes, you might hear a lot about them or some other trending technology of the year...but guess what!

Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.

Instead, here are basic skills that will get you further than mastering any framework:


𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.

You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability

𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.

𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.

You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.

𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.

𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.

You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai

I love frameworks and libraries, and they can make anyone's job easier.

But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.

Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624

All the best 👍👍
1
𝗦𝘁𝗲𝗽 𝗜𝗻𝘁𝗼 𝗮 𝗕𝗖𝗚 𝗔𝗻𝗮𝗹𝘆𝘀𝘁’𝘀 𝗦𝗵𝗼𝗲𝘀: 𝗙𝗿𝗲𝗲 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗦𝗶𝗺𝘂𝗹𝗮𝘁𝗶𝗼𝗻 + 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗲😍

💼 Ever Wondered How Data Shapes Real Business Decisions at a Top Consulting Firm?🧑‍💻✨️

Now you can experience it firsthand with this interactive simulation from BCG (Boston Consulting Group)📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/45HWKRP

This is a powerful resume booster and a unique way to prove your analytical skills✅️
3
Build your Machine Learning Projects using Python in 6 steps
3
𝐒𝐭𝐚𝐫𝐭 𝐘𝐨𝐮𝐫 𝐃𝐚𝐭𝐚 𝐀𝐧𝐚𝐥𝐲𝐭𝐢𝐜𝐬 𝐉𝐨𝐮𝐫𝐧𝐞𝐲 — 𝟏𝟎𝟎% 𝐅𝐫𝐞𝐞 & 𝐁𝐞𝐠𝐢𝐧𝐧𝐞𝐫-𝐅𝐫𝐢𝐞𝐧𝐝𝐥𝐲😍

Want to dive into data analytics but don’t know where to start?🧑‍💻✨️

These free Microsoft learning paths take you from analytics basics to creating dashboards, AI insights with Copilot, and end-to-end analytics with Microsoft Fabric.📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/47oQD6f

No prior experience needed — just curiosity✅️
2
🔢 PostgresSQL CRUD tutorial
1👍1
1.What are the conditions for Overfitting and Underfitting?

Ans:
• In Overfitting the model performs well for the training data, but for any new data it fails to provide output. For Underfitting the model is very simple and not able to identify the correct relationship. Following are the bias and variance conditions.

• Overfitting – Low bias and High Variance results in the overfitted model. The decision tree is more prone to Overfitting.

• Underfitting – High bias and Low Variance. Such a model doesn’t perform well on test data also. For example – Linear Regression is more prone to Underfitting.


2. Which models are more prone to Overfitting?

Ans: Complex models, like the Random Forest, Neural Networks, and XGBoost are more prone to overfitting. Simpler models, like linear regression, can overfit too – this typically happens when there are more features than the number of instances in the training data.


3.  When does feature scaling should be done?

Ans: We need to perform Feature Scaling when we are dealing with Gradient Descent Based algorithms (Linear and Logistic Regression, Neural Network) and Distance-based algorithms (KNN, K-means, SVM) as these are very sensitive to the range of the data points.


4. What is a logistic function? What is the range of values of a logistic function?

Ans. f(z) = 1/(1+e -z )
The values of a logistic function will range from 0 to 1. The values of Z will vary from -infinity to +infinity.


5. What are the drawbacks of a linear model?

Ans. There are a couple of drawbacks of a linear model:

A linear model holds some strong assumptions that may not be true in application. It assumes a linear relationship, multivariate normality, no or little multicollinearity, no auto-correlation, and homoscedasticity
A linear model can’t be used for discrete or binary outcomes.
You can’t vary the model flexibility of a linear model.
2
𝟮𝟱+ 𝗠𝘂𝘀𝘁-𝗞𝗻𝗼𝘄 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗜𝗻𝘁𝗲𝗿𝘃𝗶𝗲𝘄 𝗤𝘂𝗲𝘀𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗟𝗮𝗻𝗱 𝗬𝗼𝘂𝗿 𝗗𝗿𝗲𝗮𝗺 𝗝𝗼𝗯 😍

Breaking into Data Analytics isn’t just about knowing the tools — it’s about answering the right questions with confidence🧑‍💻✨️

Whether you’re aiming for your first role or looking to level up your career, these real interview questions will test your skills📊📌

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/3JumloI

Don’t just learn — prepare smart✅️
1
🔗 Master 8 Essential Machine Learning Algorithms
1
Artificial Intelligence (AI) is the simulation of human intelligence in machines that are designed to think, learn, and make decisions. From virtual assistants to self-driving cars, AI is transforming how we interact with technology.

Hers is the brief A-Z overview of the terms used in Artificial Intelligence World

A - Algorithm: A set of rules or instructions that an AI system follows to solve problems or make decisions.

B - Bias: Prejudice in AI systems due to skewed training data, leading to unfair outcomes.

C - Chatbot: AI software that can hold conversations with users via text or voice.

D - Deep Learning: A type of machine learning using layered neural networks to analyze data and make decisions.

E - Expert System: An AI that replicates the decision-making ability of a human expert in a specific domain.

F - Fine-Tuning: The process of refining a pre-trained model on a specific task or dataset.

G - Generative AI: AI that can create new content like text, images, audio, or code.

H - Heuristic: A rule-of-thumb or shortcut used by AI to make decisions efficiently.

I - Image Recognition: The ability of AI to detect and classify objects or features in an image.

J - Jupyter Notebook: A tool widely used in AI for interactive coding, data visualization, and documentation.

K - Knowledge Representation: How AI systems store, organize, and use information for reasoning.

L - LLM (Large Language Model): An AI trained on large text datasets to understand and generate human language (e.g., GPT-4).

M - Machine Learning: A branch of AI where systems learn from data instead of being explicitly programmed.

N - NLP (Natural Language Processing): AI's ability to understand, interpret, and generate human language.

O - Overfitting: When a model performs well on training data but poorly on unseen data due to memorizing instead of generalizing.

P - Prompt Engineering: Crafting effective inputs to steer generative AI toward desired responses.

Q - Q-Learning: A reinforcement learning algorithm that helps agents learn the best actions to take.

R - Reinforcement Learning: A type of learning where AI agents learn by interacting with environments and receiving rewards.

S - Supervised Learning: Machine learning where models are trained on labeled datasets.

T - Transformer: A neural network architecture powering models like GPT and BERT, crucial in NLP tasks.

U - Unsupervised Learning: A method where AI finds patterns in data without labeled outcomes.

V - Vision (Computer Vision): The field of AI that enables machines to interpret and process visual data.

W - Weak AI: AI designed to handle narrow tasks without consciousness or general intelligence.

X - Explainable AI (XAI): Techniques that make AI decision-making transparent and understandable to humans.

Y - YOLO (You Only Look Once): A popular real-time object detection algorithm in computer vision.

Z - Zero-shot Learning: The ability of AI to perform tasks it hasn’t been explicitly trained on.

Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
3
Forwarded from Artificial Intelligence
𝐄𝐚𝐫𝐧 𝐅𝐑𝐄𝐄 𝐎𝐫𝐚𝐜𝐥𝐞 𝐂𝐞𝐫𝐭𝐢𝐟𝐢𝐜𝐚𝐭𝐢𝐨𝐧𝐬 𝐢𝐧 𝟐𝟎𝟐𝟓 — 𝐂𝐥𝐨𝐮𝐝, 𝐀𝐈 & 𝐃𝐚𝐭𝐚!😍

Oracle’s Race to Certification is here — your chance to earn globally recognized certifications for FREE!💥

💡 Choose from in-demand certifications in:
☁️ Cloud
🤖 AI
📊 Data
…and more!

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4lx2tin

But hurry — spots are limited, and the clock is ticking!✅️
2
Most people learn SQL just enough to pull some data. But if you really understand it, you can analyze massive datasets without touching Excel or Python.

Here are 8 game-changing SQL concepts that will make you a data pro:

👇


1. Stop pulling raw data. Start pulling insights.

The biggest mistake? Running a query that gives you everything and then filtering it later.

Good analysts don’t pull raw data. They shape the data before it even reaches them.

2. “SELECT ” is a rookie move.

Pulling all columns is lazy and slow.

A pro only selects what they need.
✔️ Fewer columns = Faster queries
✔️ Less noise = Clearer insights

The more precise your query, the less time you waste cleaning data.

3. GROUP BY is your best friend.

You don’t need 100,000 rows of transactions. What you need is:
✔️ Sales per region
✔️ Average order size per customer
✔️ Number of signups per month

Grouping turns chaotic data into useful summaries.

4. Joins = Connecting the dots.

Your most important data is split across multiple tables.

Want to know how much each customer spent? You need to join:
✔️ Customer info
✔️ Order history
✔️ Payments

Joins = unlocking hidden insights.

5. Window functions will blow your mind.

They let you:
✔️ Rank customers by total purchases
✔️ Calculate rolling averages
✔️ Compare each row to the overall trend

It’s like pivot tables, but way more powerful.

6. CTEs will save you from spaghetti SQL.

Instead of writing a 50-line nested query, break it into steps.

CTEs (Common Table Expressions) make your SQL:
✔️ Easier to read
✔️ Easier to debug
✔️ Reusable

Good SQL is clean SQL.

7. Indexes = Speed.

If your queries take forever, your database is probably doing unnecessary work.

Indexes help databases find data faster.

If you work with large datasets, this is a game changer.

SQL isn’t just about pulling data. It’s about analyzing, transforming, and optimizing it.

Master these 7 concepts, and you’ll never look at SQL the same way again.

Join us on WhatsApp: https://whatsapp.com/channel/0029VanC5rODzgT6TiTGoa1v
5