Generative AI – Telegram
Generative AI
26.4K subscribers
493 photos
3 videos
82 files
268 links
Welcome to Generative AI
👨‍💻 Join us to understand and use the tech
👩‍💻 Learn how to use Open AI & Chatgpt
🤖 The REAL No.1 AI Community

Admin: @coderfun

Buy ads: https://telega.io/c/generativeai_gpt
Download Telegram
List Slicing in Python 👆
3
𝟒 𝐁𝐞𝐬𝐭 𝐏𝐨𝐰𝐞𝐫 𝐁𝐈 𝐂𝐨𝐮𝐫𝐬𝐞𝐬 𝐢𝐧 𝟐𝟎𝟐𝟓 𝐭𝐨 𝐒𝐤𝐲𝐫𝐨𝐜𝐤𝐞𝐭 𝐘𝐨𝐮𝐫 𝐂𝐚𝐫𝐞𝐞𝐫😍

In today’s data-driven world, Power BI has become one of the most in-demand tools for businesses〽️📊

The best part? You don’t need to spend a fortune—there are free and affordable courses available online to get you started.💥🧑‍💻

𝐋𝐢𝐧𝐤👇:-

https://pdlink.in/4mDvgDj

Start learning today and position yourself for success in 2025!✅️
1
📊 Data Science Project Ideas to Practice & Master Your Skills

🟢 Beginner Level
• Titanic Survival Prediction (Logistic Regression)
• House Price Prediction (Linear Regression)
• Exploratory Data Analysis on IPL or Netflix Dataset
• Customer Segmentation (K-Means Clustering)
• Weather Data Visualization

🟡 Intermediate Level
• Sentiment Analysis on Tweets
• Credit Card Fraud Detection
• Time Series Forecasting (Stock or Sales Data)
• Image Classification using CNN (Fashion MNIST)
• Recommendation System for Movies/Products

🔴 Advanced Level
• End-to-End Machine Learning Pipeline with Deployment
• NLP Chatbot using Transformers
• Real-Time Dashboard with Streamlit + ML
• Anomaly Detection in Network Traffic
• A/B Testing & Business Decision Modeling

💬 Double Tap ❤️ for more! 🤖📈
6
🚀🔥 𝗕𝗲𝗰𝗼𝗺𝗲 𝗮𝗻 𝗔𝗴𝗲𝗻𝘁𝗶𝗰 𝗔𝗜 𝗕𝘂𝗶𝗹𝗱𝗲𝗿 — 𝗙𝗿𝗲𝗲 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗣𝗿𝗼𝗴𝗿𝗮𝗺
Master the most in-demand AI skill in today’s job market: building autonomous AI systems.

In Ready Tensor’s free, project-first program, you’ll create three portfolio-ready projects using 𝗟𝗮𝗻𝗴𝗖𝗵𝗮𝗶𝗻, 𝗟𝗮𝗻𝗴𝗚𝗿𝗮𝗽𝗵, and vector databases — and deploy production-ready agents that employers will notice.

Includes guided lectures, videos, and code.
𝗙𝗿𝗲𝗲. 𝗦𝗲𝗹𝗳-𝗽𝗮𝗰𝗲𝗱. 𝗖𝗮𝗿𝗲𝗲𝗿-𝗰𝗵𝗮𝗻𝗴𝗶𝗻𝗴.

👉 Apply now: https://bit.ly/4mPEgER
5👏1
SQL beginner to advanced level
1
𝟰 𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗚𝗲𝗻𝗲𝗿𝗮𝘁𝗶𝘃𝗲 𝗔𝗜 𝗧𝗿𝗮𝗶𝗻𝗶𝗻𝗴 𝗠𝗼𝗱𝘂𝗹𝗲𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗦𝗸𝗶𝗹𝗹𝘀😍

Generative AI is no longer just a buzzword—it’s a career-maker🧑‍💻📌

Recruiters are actively looking for candidates with prompt engineering skills, hands-on AI experience, and the ability to use tools like GitHub Copilot and Azure OpenAI effectively.🖥

𝐋𝐢𝐧𝐤👇:-

http://pdlink.in/4fKT5pL

If you’re looking to stand out in interviews, land AI-powered roles, or future-proof your career, this is your chance
2
Essential Tools, Libraries, and Frameworks to learn Artificial Intelligence

1. Programming Languages:

Python

R

Java

Julia


2. AI Frameworks:

TensorFlow

PyTorch

Keras

MXNet

Caffe


3. Machine Learning Libraries:

Scikit-learn: For classical machine learning models.

XGBoost: For boosting algorithms.

LightGBM: For gradient boosting models.


4. Deep Learning Tools:

TensorFlow

PyTorch

Keras

Theano


5. Natural Language Processing (NLP) Tools:

NLTK (Natural Language Toolkit)

SpaCy

Hugging Face Transformers

Gensim


6. Computer Vision Libraries:

OpenCV

DLIB

Detectron2


7. Reinforcement Learning Frameworks:

Stable-Baselines3

RLlib

OpenAI Gym


8. AI Development Platforms:

IBM Watson

Google AI Platform

Microsoft AI


9. Data Visualization Tools:

Matplotlib

Seaborn

Plotly

Tableau


10. Robotics Frameworks:

ROS (Robot Operating System)

MoveIt!


11. Big Data Tools for AI:

Apache Spark

Hadoop


12. Cloud Platforms for AI Deployment:

Google Cloud AI

AWS SageMaker

Microsoft Azure AI


13. Popular AI APIs and Services:

Google Cloud Vision API

Microsoft Azure Cognitive Services

IBM Watson AI APIs


14. Learning Resources and Communities:

Kaggle

GitHub AI Projects

Papers with Code


Share with credits: https://news.1rj.ru/str/machinelearning_deeplearning

ENJOY LEARNING 👍👍
7
Many data scientists don't know how to push ML models to production. Here's the recipe 👇

𝗞𝗲𝘆 𝗜𝗻𝗴𝗿𝗲𝗱𝗶𝗲𝗻𝘁𝘀

🔹 𝗧𝗿𝗮𝗶𝗻 / 𝗧𝗲𝘀𝘁 𝗗𝗮𝘁𝗮𝘀𝗲𝘁 - Ensure Test is representative of Online data
🔹 𝗙𝗲𝗮𝘁𝘂𝗿𝗲 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 𝗣𝗶𝗽𝗲𝗹𝗶𝗻𝗲 - Generate features in real-time
🔹 𝗠𝗼𝗱𝗲𝗹 𝗢𝗯𝗷𝗲𝗰𝘁 - Trained SkLearn or Tensorflow Model
🔹 𝗣𝗿𝗼𝗷𝗲𝗰𝘁 𝗖𝗼𝗱𝗲 𝗥𝗲𝗽𝗼 - Save model project code to Github
🔹 𝗔𝗣𝗜 𝗙𝗿𝗮𝗺𝗲𝘄𝗼𝗿𝗸 - Use FastAPI or Flask to build a model API
🔹 𝗗𝗼𝗰𝗸𝗲𝗿 - Containerize the ML model API
🔹 𝗥𝗲𝗺𝗼𝘁𝗲 𝗦𝗲𝗿𝘃𝗲𝗿 - Choose a cloud service; e.g. AWS sagemaker
🔹 𝗨𝗻𝗶𝘁 𝗧𝗲𝘀𝘁𝘀 - Test inputs & outputs of functions and APIs
🔹 𝗠𝗼𝗱𝗲𝗹 𝗠𝗼𝗻𝗶𝘁𝗼𝗿𝗶𝗻𝗴 - Evidently AI, a simple, open-source for ML monitoring

𝗣𝗿𝗼𝗰𝗲𝗱𝘂𝗿𝗲

𝗦𝘁𝗲𝗽 𝟭 - 𝗗𝗮𝘁𝗮 𝗣𝗿𝗲𝗽𝗮𝗿𝗮𝘁𝗶𝗼𝗻 & 𝗙𝗲𝗮𝘁𝘂𝗿𝗲 𝗘𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴

Don't push a model with 90% accuracy on train set. Do it based on the test set - if and only if, the test set is representative of the online data. Use SkLearn pipeline to chain a series of model preprocessing functions like null handling.

𝗦𝘁𝗲𝗽 𝟮 - 𝗠𝗼𝗱𝗲𝗹 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁

Train your model with frameworks like Sklearn or Tensorflow. Push the model code including preprocessing, training and validation noscripts to Github for reproducibility.

𝗦𝘁𝗲𝗽 𝟯 - 𝗔𝗣𝗜 𝗗𝗲𝘃𝗲𝗹𝗼𝗽𝗺𝗲𝗻𝘁 & 𝗖𝗼𝗻𝘁𝗮𝗶𝗻𝗲𝗿𝗶𝘇𝗮𝘁𝗶𝗼𝗻

Your model needs a "/predict" endpoint, which receives a JSON object in the request input and generates a JSON object with the model score in the response output. You can use frameworks like FastAPI or Flask. Containzerize this API so that it's agnostic to server environment

𝗦𝘁𝗲𝗽 𝟰 - 𝗧𝗲𝘀𝘁𝗶𝗻𝗴 & 𝗗𝗲𝗽𝗹𝗼𝘆𝗺𝗲𝗻𝘁

Write tests to validate inputs & outputs of API functions to prevent errors. Push the code to remote services like AWS Sagemaker.

𝗦𝘁𝗲𝗽 𝟱 - 𝗠𝗼𝗻𝗶𝘁𝗼𝗿𝗶𝗻𝗴

Set up monitoring tools like Evidently AI, or use a built-in one within AWS Sagemaker. I use such tools to track performance metrics and data drifts on online data.

Data Science Resources
👇👇
https://whatsapp.com/channel/0029Va8v3eo1NCrQfGMseL2D

Like if you need similar content 😄👍
4🔥1👏1