Опенсорсная модель с ризонингом K2-Think (не путать с Kimi K2) от LLM360 имеет размер всего 32B (построена на базе Qwen2.5), но бьёт многие более тяжёлые открытые модели. Спасибо фулл-стэк подходу, включающему обучение (SFT+RLVR), тест-тайм скейлинг (планирование и best-of-3) и инференс (спекулятивное декодирование и работу на Cerebras (!)).
https://news.1rj.ru/str/gonzo_ML_podcasts/823
Термин фулл-стэк приходит в ML :)
https://news.1rj.ru/str/gonzo_ML_podcasts/823
Термин фулл-стэк приходит в ML :)
🔥21😁9❤3
Важный апдейт про развенчание заоблачного перформанса K2-Think от независимой команды.
Оценка была некорректная, включала контаминацию, занижала скоры других моделей и использовала их неоптимальным образом. Микро-усреднение также даёт избыточно высокий вес (66%) бенчмарку, на котором модель лучше всего.
Плюс претензии к неравному сравнению: best-of-3 vs. best-of-1 и неизвестного размера внешняя модель-помощник. Этот момент интересный, поскольку во многих случаях и так уже неясно, сравниваем мы чистую модель или какую-то систему с моделью, что особенно часто проявляется при сравнении с закрытыми моделями. Мне кажется было бы правильно сравнивать нормируя на вычислительные ресурсы.
https://www.sri.inf.ethz.ch/blog/k2think
Авторы сделали переоценку на MathArena:
Оценка была некорректная, включала контаминацию, занижала скоры других моделей и использовала их неоптимальным образом. Микро-усреднение также даёт избыточно высокий вес (66%) бенчмарку, на котором модель лучше всего.
Плюс претензии к неравному сравнению: best-of-3 vs. best-of-1 и неизвестного размера внешняя модель-помощник. Этот момент интересный, поскольку во многих случаях и так уже неясно, сравниваем мы чистую модель или какую-то систему с моделью, что особенно часто проявляется при сравнении с закрытыми моделями. Мне кажется было бы правильно сравнивать нормируя на вычислительные ресурсы.
https://www.sri.inf.ethz.ch/blog/k2think
Авторы сделали переоценку на MathArena:
SRI Lab
Debunking the Claims of K2-Think
K2-Think is a recently released LLM that claims performance on par with GPT-OSS 120B and DeepSeek v3.1, despite having fewer parameters. As we discuss below, the reported gains are overstated, relying on flawed evaluation marked by contamination, unfair comparisons…
👍19👏7❤1😁1
Ещё одна любопытная недавно нашумевшая работа про SpikingBrain LLM, где взяли Qwen2.5 и делают на его базе эффективную модель. В этот раз более спайко-подобную, хорошо работающую на очень длинном контексте и потенциально намного более энергоэффективную. Это ещё не полноценная спайковая сеть на нейроморфном процессоре, но уже шаг. Гоняют на китайском GPU MetaX.
Очень перекликается с K2-Think, хоть его результаты и обругали (ничего, исправят в следующей версии). Везде фулл-стек инжиниринг, в обеих работах не-нвидиевское железо и база Qwen2.5. Всё, я уже жду вакансии фулл-стеков в ML!
https://news.1rj.ru/str/gonzo_ML_podcasts/834
Очень перекликается с K2-Think, хоть его результаты и обругали (ничего, исправят в следующей версии). Везде фулл-стек инжиниринг, в обеих работах не-нвидиевское железо и база Qwen2.5. Всё, я уже жду вакансии фулл-стеков в ML!
https://news.1rj.ru/str/gonzo_ML_podcasts/834
Telegram
gonzo_ML_podcasts
SpikingBrain Technical Report: Spiking Brain-inspired Large Models
Authors: Yuqi Pan, Yupeng Feng, Jinghao Zhuang, Siyu Ding, Zehao Liu, Bohan Sun, Yuhong Chou, Han Xu, Xuerui Qiu, Anlin Deng, Anjie Hu, Peng Zhou, Man Yao, Jibin Wu, Jian Yang, Guoliang Sun…
Authors: Yuqi Pan, Yupeng Feng, Jinghao Zhuang, Siyu Ding, Zehao Liu, Bohan Sun, Yuhong Chou, Han Xu, Xuerui Qiu, Anlin Deng, Anjie Hu, Peng Zhou, Man Yao, Jibin Wu, Jian Yang, Guoliang Sun…
1👍24🔥1👀1
Стартап Миры Мурати разродился на этой неделе первым постом в блоге. Тема: воспроизводимость ответов LLM.
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/
Где там остаётся недетерминизм, когда все сиды уже зафиксированы. Разбирают неассоциативность сложения чисел с плавающей точкой и прочее.
Прикольно, но задачей на миллиард не выглядит :) Ждём других постов.
https://thinkingmachines.ai/blog/defeating-nondeterminism-in-llm-inference/
Где там остаётся недетерминизм, когда все сиды уже зафиксированы. Разбирают неассоциативность сложения чисел с плавающей точкой и прочее.
Прикольно, но задачей на миллиард не выглядит :) Ждём других постов.
Thinking Machines Lab
Defeating Nondeterminism in LLM Inference
Reproducibility is a bedrock of scientific progress. However, it’s remarkably difficult to get reproducible results out of large language models.
For example, you might observe that asking ChatGPT the same question multiple times provides different results.…
For example, you might observe that asking ChatGPT the same question multiple times provides different results.…
🔥20😢7❤3👀3🤡2
Огромная работа с обзором всего современного RL для ризонинга:
https://news.1rj.ru/str/gonzo_ML_podcasts/849
https://news.1rj.ru/str/gonzo_ML_podcasts/849
🔥24👍2👀1
Forwarded from Mikhail Samin
16 сентября у Элиезера Юдковского выходит новая книга!
О книге уже положительно отозвались крупные учёные (от самого высокоцитируемого живущего учёного и лауреата премии Тьюринга Йошуа Бенжио до Нобелевского лауреата по экономике Бена Бернанке), профессора компьютерных наук и информационной безопасности, бывший промежуточный CEO OpenAI и какое-то число известных людей (от Стивена Фрая до Grimes).
Макс Тегмарк (профессор физики из MIT) назвал эту книгу самой важной книгой десятилетия.
В отличие от известного многим вам фанфика, эта книга — нон-фикшн (и написана в соавторстве с президентом MIRI Нейтом Соаресом). Она называется "If Anyone Builds It, Everyone Dies: Why Superhuman AI Would Kill Us All" и рассказывает о проблеме, над которой Юдковский стал работать за десять лет до начала написания ГПиМРМ.
К сожалению, название книги — не преувеличение, а точное описание ситуации, в которой находится человечество. Книга подробно объясняет, почему из-за того, как устроены современные ИИ, какой уровень контроля мы имеем над их внутренним устройством и какой уровень контроля будем иметь над их целями, когда эти системы станут сверхчеловеческими, все на планете буквально умрут, если искусственный суперинтеллект будет создан в условиях и с технологиями, подобными текущим.
Юдковский с соавтором выпускают книгу через традиционное издательство, потому что надеются так достичь аудиторию, обычно недоступную постам в блогах и статьям в научных журналах. Цель — не заработать на продажах: они потратят на книгу гораздо больше своих авторских гонораров.
У книги уже больше 5 000 предзаказов; вероятно, она попадёт в список бестселлеров New York Times. Но чтобы попасть на первые строчки списка и получить максимально широкое освещение, нужно 20-25 000 проданных копий за неделю. (Предзаказы считаются продажами в первую неделю.)
Поэтому огромная просьба: если у вас есть возможность заказать книжку, сделайте это. Особенно если Юдковский был вам больше, чем на тридцать долларов полезен: заказ книги сейчас очень поможет.
Со мной ещё до выхода поделились черновиком; книга ещё и очень хорошо написана и убедительно и корректно рассказывает о самой важной (на мой взгляд и на взгляд авторов) из стоящих перед человечеством проблем.
Сделать предзаказ на Amazon: amzn.to/4pnKLAW
Если вы в России, воспользуйтесь любой из служб доставки, которые пересылают посылки от Amazon. Мы собрали несколько способов в этом гугл-доке. (Если можете порекомендовать другие способы, посоветуйте в комментариях!).
Если вы в других странах вне Штатов, по ссылке может быть доступна только версия в мягкой обложке — paperback. Найдите местную версию книги через поиск или в книжных вашей страны.
На русском книга выйдет в следующем году в Corpus. Но огромная просьба попытаться сделать предзаказ на английском. Это действительно очень помогло бы.
О книге уже положительно отозвались крупные учёные (от самого высокоцитируемого живущего учёного и лауреата премии Тьюринга Йошуа Бенжио до Нобелевского лауреата по экономике Бена Бернанке), профессора компьютерных наук и информационной безопасности, бывший промежуточный CEO OpenAI и какое-то число известных людей (от Стивена Фрая до Grimes).
Макс Тегмарк (профессор физики из MIT) назвал эту книгу самой важной книгой десятилетия.
В отличие от известного многим вам фанфика, эта книга — нон-фикшн (и написана в соавторстве с президентом MIRI Нейтом Соаресом). Она называется "If Anyone Builds It, Everyone Dies: Why Superhuman AI Would Kill Us All" и рассказывает о проблеме, над которой Юдковский стал работать за десять лет до начала написания ГПиМРМ.
К сожалению, название книги — не преувеличение, а точное описание ситуации, в которой находится человечество. Книга подробно объясняет, почему из-за того, как устроены современные ИИ, какой уровень контроля мы имеем над их внутренним устройством и какой уровень контроля будем иметь над их целями, когда эти системы станут сверхчеловеческими, все на планете буквально умрут, если искусственный суперинтеллект будет создан в условиях и с технологиями, подобными текущим.
Юдковский с соавтором выпускают книгу через традиционное издательство, потому что надеются так достичь аудиторию, обычно недоступную постам в блогах и статьям в научных журналах. Цель — не заработать на продажах: они потратят на книгу гораздо больше своих авторских гонораров.
У книги уже больше 5 000 предзаказов; вероятно, она попадёт в список бестселлеров New York Times. Но чтобы попасть на первые строчки списка и получить максимально широкое освещение, нужно 20-25 000 проданных копий за неделю. (Предзаказы считаются продажами в первую неделю.)
Поэтому огромная просьба: если у вас есть возможность заказать книжку, сделайте это. Особенно если Юдковский был вам больше, чем на тридцать долларов полезен: заказ книги сейчас очень поможет.
Со мной ещё до выхода поделились черновиком; книга ещё и очень хорошо написана и убедительно и корректно рассказывает о самой важной (на мой взгляд и на взгляд авторов) из стоящих перед человечеством проблем.
Сделать предзаказ на Amazon: amzn.to/4pnKLAW
Если вы в России, воспользуйтесь любой из служб доставки, которые пересылают посылки от Amazon. Мы собрали несколько способов в этом гугл-доке. (Если можете порекомендовать другие способы, посоветуйте в комментариях!).
Если вы в других странах вне Штатов, по ссылке может быть доступна только версия в мягкой обложке — paperback. Найдите местную версию книги через поиск или в книжных вашей страны.
На русском книга выйдет в следующем году в Corpus. Но огромная просьба попытаться сделать предзаказ на английском. Это действительно очень помогло бы.
If Anyone Builds It, Everyone Dies
The race to superhuman AI risks extinction, but it's not too late to change course.
🤡81👍30❤17👎11🔥8🥱7🤷♂3💩2👀2😁1
Потрясающий набор реакций на Юдковского, впрочем ожидаемо. Я лично прочитаю, мне интересно, какие у него аргументы. В плане аргументов мне также нравятся аргументы Рассела (https://news.1rj.ru/str/gonzo_ML/1516), но что-то мне подсказывает, многие из скептиков про них даже не думали.
Telegram
gonzo-обзоры ML статей
“Human Compatible”, Stuart Russell
https://people.eecs.berkeley.edu/~russell/hc.html
Снова про книги.
Добрался до “Human Compatible” Стюарта Расселла, профессора из Беркли, известного в том числе соавторством вместе с Питером Норвигом общеизвестной книги…
https://people.eecs.berkeley.edu/~russell/hc.html
Снова про книги.
Добрался до “Human Compatible” Стюарта Расселла, профессора из Беркли, известного в том числе соавторством вместе с Питером Норвигом общеизвестной книги…
❤13🌚6👍4🤝3🤡2💩1
Вот вам ещё свежая работа из Дипмайнда: Virtual Agent Economies
https://news.1rj.ru/str/gonzo_ML_podcasts/860
Авторы утверждают, что наш путь по умолчанию — спонтанная и проницаемая экономика — функционально эквивалентен простому участию ИИ-агентов в существующей человеческой экономике, но на машинных скоростях и в машинных масштабах. Этот сценарий служит предостережением о непредвиденном эмерджентном поведении и потенциале широкомасштабного финансового ущерба. Ключевой тезис работы — это призыв к действию: перейти от реактивной позиции к проактивному архитектурному проектированию.
https://news.1rj.ru/str/gonzo_ML_podcasts/860
Авторы утверждают, что наш путь по умолчанию — спонтанная и проницаемая экономика — функционально эквивалентен простому участию ИИ-агентов в существующей человеческой экономике, но на машинных скоростях и в машинных масштабах. Этот сценарий служит предостережением о непредвиденном эмерджентном поведении и потенциале широкомасштабного финансового ущерба. Ключевой тезис работы — это призыв к действию: перейти от реактивной позиции к проактивному архитектурному проектированию.
Telegram
gonzo_ML_podcasts
Проектируем следующий экономический слой с ИИ-агентами
Virtual Agent Economies
Nenad Tomašev, Matija Franklin, Joel Z. Leibo, Julian Jacobs, William A. Cunningham, Iason Gabriel, and Simon Osindero
Статья: https://arxiv.org/abs/2509.10147
# TL;DR
Что сделано?…
Virtual Agent Economies
Nenad Tomašev, Matija Franklin, Joel Z. Leibo, Julian Jacobs, William A. Cunningham, Iason Gabriel, and Simon Osindero
Статья: https://arxiv.org/abs/2509.10147
# TL;DR
Что сделано?…
👍18❤2😁2
Прикольно. Статья про Deepseek-R1 (https://news.1rj.ru/str/gonzo_ML/3319) вышла в натуре. Не всё Дипмайнду только там публиковаться :)
https://www.nature.com/articles/s41586-025-09422-z
https://www.nature.com/articles/s41586-025-09422-z
Nature
DeepSeek-R1 incentivizes reasoning in LLMs through reinforcement learning
Nature - A new artificial intelligence model, DeepSeek-R1, is introduced, demonstrating that the reasoning abilities of large language models can be incentivized through pure reinforcement...
👍26🔥10🥰2👏2
В тему агентских экономик (https://news.1rj.ru/str/gonzo_ML/4032), Гугл анонсировал агентский протокол для платежей Agent Payments Protocol (AP2), расширение A2A. Покупки могут совершаться как с человеком, так и без.
https://cloud.google.com/blog/products/ai-machine-learning/announcing-agents-to-payments-ap2-protocol
https://cloud.google.com/blog/products/ai-machine-learning/announcing-agents-to-payments-ap2-protocol
Google Cloud Blog
Announcing Agent Payments Protocol (AP2) | Google Cloud Blog
Learn more about the Agent Payments Protocol (AP2), an open protocol that builds on A2A, Agent to Agent Protocol. AP2 was developed by Google with leading payments and technology companies to securely initiate and transact agent-led payments across platforms.
😱16👍13❤1
Интересный подход PostNAS с поиском оптимальной архитектуры LLM в работе про Jet-Nemotron:
https://news.1rj.ru/str/gonzo_ML_podcasts/863
Не надо пробовать 100500 вариантов во время обучения (как работает классический NAS), надо обучить большую сеть, "включающую всё", а потом коцать её, занимаясь оптимизацией. Напоминает идейно pruning, но на чуть другом уровне.
Результат интересный. Итоговые маленькие модели бьют оригинальные хорошие (и часто более тяжёлые) бейзлайны. Скорость генерации на уровне топовых нетрансформерных архитектур. Ну и сам JetBlock в целом по сути из той же когорты.
https://news.1rj.ru/str/gonzo_ML_podcasts/863
Не надо пробовать 100500 вариантов во время обучения (как работает классический NAS), надо обучить большую сеть, "включающую всё", а потом коцать её, занимаясь оптимизацией. Напоминает идейно pruning, но на чуть другом уровне.
Результат интересный. Итоговые маленькие модели бьют оригинальные хорошие (и часто более тяжёлые) бейзлайны. Скорость генерации на уровне топовых нетрансформерных архитектур. Ну и сам JetBlock в целом по сути из той же когорты.
Telegram
gonzo_ML_podcasts
Jet-Nemotron: Efficient Language Model with Post Neural Architecture Search
Authors: Yuxian Gu, Qinghao Hu, Shang Yang, Haocheng Xi, Junyu Chen, Song Han, Han Cai
Статья: https://arxiv.org/abs/2508.15884
Код: https://github.com/NVlabs/Jet-Nemotron
Ревью:…
Authors: Yuxian Gu, Qinghao Hu, Shang Yang, Haocheng Xi, Junyu Chen, Song Han, Han Cai
Статья: https://arxiv.org/abs/2508.15884
Код: https://github.com/NVlabs/Jet-Nemotron
Ревью:…
1👍11😁2❤1
А вот и Навье-Стокс от Дипмайнда подоспел
https://deepmind.google/discover/blog/discovering-new-solutions-to-century-old-problems-in-fluid-dynamics/
https://deepmind.google/discover/blog/discovering-new-solutions-to-century-old-problems-in-fluid-dynamics/
Google DeepMind
Discovering new solutions to century-old problems in fluid dynamics
In a new paper, we introduce an entirely new family of mathematical blow ups to some of the most complex equations that describe fluid motion. Our approach presents a new way in which...
25❤45👍10🔥10👎2
Pre-training under infinite compute
Konwoo Kim, Suhas Kotha, Percy Liang, Tatsunori Hashimoto
Статья: https://arxiv.org/abs/2509.14786
Код: https://github.com/marin-community/marin/tree/suhas/data-efficiency
Прикольная работа про законы скейлинга, разные экспоненты и пользу дистилляции и ансамблирования. Авторы задают очень интересный вопрос: в будущем, когда компьюта будет дофига, а данные кончатся, как наиболее эффективно обучать модели? Ответы интересны.
Исследование начинается с создания базового сценария, который имитирует текущую практику в условиях нехватки данных: берётся фиксированный датасет на 200М токенов, и для него либо увеличивается количество эпох обучения, либо масштабируется число параметров модели. Результаты не слишком удивляют: оба подхода в конечном итоге приводят к переобучению, когда лосс на валидации выходит на плато, а затем начинает расти. Это показывает, что простое вливание большего количества вычислений в существующие рецепты даёт убывающую и в конечном счёте отрицательную отдачу, ограничивая достижимую производительность.
Вопрос, что можно сделать по-другому?
Вместо оценки производительности при фиксированном вычислительном бюджете авторы предлагают измерять конечный потенциал рецепта обучения по асимптоте его закона масштабирования. Найдя методы, которые заставляют лосс монотонно убывать с ростом вычислений, можно аппроксимировать эту зависимость степенным законом и экстраполировать производительность при стремлении вычислений к бесконечности. Эта асимптота представляет собой наилучший возможный лосс, которого данный рецепт может достичь на фиксированном датасете, что даёт более надёжную метрику для будущего с избытком вычислительных ресурсов.
Ядро статьи заключается в поиске простых, но эффективных алгоритмических приёмов, которые обеспечивают желаемое монотонное масштабирование и приводят к более низким асимптотам лосса.
1. Агрессивная регуляризация для масштабирования параметров
Ключ к предотвращению переобучения при масштабировании параметров одной модели -- это правильная регуляризация. Авторы обнаружили, что совместный подбор скорости обучения, количества эпох и weight decay для каждого размера модели позволяет достичь чистого, монотонного убывания лосса, которое следует степенному закону. Этот результат согласуется с современной теорией машинного обучения о сверхпараметризации и «двойном спуске» (double descent, https://news.1rj.ru/str/gonzo_ML/832), когда производительность очень больших моделей может ухудшиться, прежде чем снова начать улучшаться. Статья показывает, что при правильной настройке регуляризации эту проблемную область можно сгладить, получив чистый закон масштабирования.
Ключевой вывод заключается в том, что оптимальное значение затухания весов для сверхпараметризованных моделей значительно выше стандартной практики -- вплоть до 30x. Такая агрессивная регуляризация позволяет более крупным моделям продолжать улучшаться там, где их нерегуляризованные аналоги переобучились бы. Для датасета в 200M токенов этот регуляризованный рецепт следует степенному закону L̂₂₀₀ₘ,ₙ = 0.05 / N¹·⁰² + 3.43, что предсказывает наилучшую асимптоту лосса в 3.43.
2. Ансамблирование: лучший путь к масштабированию
Konwoo Kim, Suhas Kotha, Percy Liang, Tatsunori Hashimoto
Статья: https://arxiv.org/abs/2509.14786
Код: https://github.com/marin-community/marin/tree/suhas/data-efficiency
Прикольная работа про законы скейлинга, разные экспоненты и пользу дистилляции и ансамблирования. Авторы задают очень интересный вопрос: в будущем, когда компьюта будет дофига, а данные кончатся, как наиболее эффективно обучать модели? Ответы интересны.
Исследование начинается с создания базового сценария, который имитирует текущую практику в условиях нехватки данных: берётся фиксированный датасет на 200М токенов, и для него либо увеличивается количество эпох обучения, либо масштабируется число параметров модели. Результаты не слишком удивляют: оба подхода в конечном итоге приводят к переобучению, когда лосс на валидации выходит на плато, а затем начинает расти. Это показывает, что простое вливание большего количества вычислений в существующие рецепты даёт убывающую и в конечном счёте отрицательную отдачу, ограничивая достижимую производительность.
Вопрос, что можно сделать по-другому?
Вместо оценки производительности при фиксированном вычислительном бюджете авторы предлагают измерять конечный потенциал рецепта обучения по асимптоте его закона масштабирования. Найдя методы, которые заставляют лосс монотонно убывать с ростом вычислений, можно аппроксимировать эту зависимость степенным законом и экстраполировать производительность при стремлении вычислений к бесконечности. Эта асимптота представляет собой наилучший возможный лосс, которого данный рецепт может достичь на фиксированном датасете, что даёт более надёжную метрику для будущего с избытком вычислительных ресурсов.
Ядро статьи заключается в поиске простых, но эффективных алгоритмических приёмов, которые обеспечивают желаемое монотонное масштабирование и приводят к более низким асимптотам лосса.
1. Агрессивная регуляризация для масштабирования параметров
Ключ к предотвращению переобучения при масштабировании параметров одной модели -- это правильная регуляризация. Авторы обнаружили, что совместный подбор скорости обучения, количества эпох и weight decay для каждого размера модели позволяет достичь чистого, монотонного убывания лосса, которое следует степенному закону. Этот результат согласуется с современной теорией машинного обучения о сверхпараметризации и «двойном спуске» (double descent, https://news.1rj.ru/str/gonzo_ML/832), когда производительность очень больших моделей может ухудшиться, прежде чем снова начать улучшаться. Статья показывает, что при правильной настройке регуляризации эту проблемную область можно сгладить, получив чистый закон масштабирования.
Ключевой вывод заключается в том, что оптимальное значение затухания весов для сверхпараметризованных моделей значительно выше стандартной практики -- вплоть до 30x. Такая агрессивная регуляризация позволяет более крупным моделям продолжать улучшаться там, где их нерегуляризованные аналоги переобучились бы. Для датасета в 200M токенов этот регуляризованный рецепт следует степенному закону L̂₂₀₀ₘ,ₙ = 0.05 / N¹·⁰² + 3.43, что предсказывает наилучшую асимптоту лосса в 3.43.
2. Ансамблирование: лучший путь к масштабированию
❤11👍8
Хотя регуляризация решает проблему масштабирования одной модели, авторы задаются вопросом, есть ли лучший способ потратить бесконечные вычислительные ресурсы. Мы все знаем про пользу ансамблирования. Кажется, на Каггле это традиционно был универсальный рецепт -- в любой непонятной ситуации делай ансамблирование. Обучая несколько (
Это означает, что при достаточно большом общем количестве параметров эффективнее обучать кучу небольших моделей, чем одного монолитного гиганта. Авторы также обнаружили, что оптимальные гиперпараметры для членов ансамбля (настроенные для предела K → ∞) предпочитают большее количество эпох и меньшее затухание весов по сравнению с одиночной моделью. Интуитивно это позволяет каждому члену ансамбля стать слегка переобученным «специалистом».
Объединение этих двух стратегий -- совместный рецепт масштабирования, где и количество параметров каждого члена (
Эти алгоритмические улучшения приводят к значительному выигрышу в эффективности использования данных. На масштабе 200M токенов совместный рецепт масштабирования оказывается в 5.17 раз более эффективным по данным, чем стандартный. Анализируя масштабирование на более крупных датасетах (до 1.6B токенов), авторы показывают, что этот прирост эффективности, по прогнозам, останется постоянным, поскольку законы масштабирования по данным для всех рецептов убывают с одинаковой скоростью.
И тут начинается особенно интересная часть.
Вычислительные затраты на обучение и запуск больших ансамблей могут показаться непрактичными. Однако статья демонстрирует, что эти улучшения производительности можно упаковать в меньшие, эффективные модели с помощью дистилляции. Про виды дистилляции мы писали много (https://news.1rj.ru/str/gonzo_ML/117), поищите поиском по каналу. Здесь рассматриваются два:
* Дистилляция ансамбля: Ансамбль из 8 членов (с общим числом параметров 2.4B) был дистиллирован в одну модель-студента на 300M параметров. Этот студент, с в 8 раз меньшим бюджетом на инференс, сохранил 83% улучшения лосса ансамбля по сравнению с лучшей регуляризованной 300М-моделью и даже превзошёл асимптоту регуляризованного рецепта.
K) независимых моделей фиксированного размера и усредняя их логиты, они достигают значительно более низкой асимптоты лосса. Например, ансамбль моделей на 300M параметров даёт асимптоту 3.34, что лучше, чем 3.43 (цифры как назло такие, что легко перепутать), достигаемая при масштабировании одной модели до бесконечного числа параметров. Авторы объясняют это, ссылаясь на гипотезу «множественных представлений» (multi-view) от Allen-Zhu и Li (https://arxiv.org/abs/2012.09816). Идея в том, что для данного датасета может существовать много различных наборов предсказательных признаков. Одна модель часто склонна выучивать только одно из этих представлений, в то время как независимо обученные члены ансамбля с большей вероятностью выучат разные. Усреднение их выходов позволяет уловить более полный сигнал. Это, кстати, неплохо перекликается с другой недавней работой про то, как лучше выучивать хорошие фичи (https://news.1rj.ru/str/gonzo_ML/4009), там тоже рецепт был в обучении нескольких моделей и их конкатенации.Это означает, что при достаточно большом общем количестве параметров эффективнее обучать кучу небольших моделей, чем одного монолитного гиганта. Авторы также обнаружили, что оптимальные гиперпараметры для членов ансамбля (настроенные для предела K → ∞) предпочитают большее количество эпох и меньшее затухание весов по сравнению с одиночной моделью. Интуитивно это позволяет каждому члену ансамбля стать слегка переобученным «специалистом».
Объединение этих двух стратегий -- совместный рецепт масштабирования, где и количество параметров каждого члена (
N), и число членов ансамбля (K) стремятся к бесконечности, — даёт наименьшую возможную асимптоту лосса, оценённую в 3.17 для датасета в 200M токенов. Интересно, кстати, какое место здесь занял бы MoE, он выглядит как более срединный путь.Эти алгоритмические улучшения приводят к значительному выигрышу в эффективности использования данных. На масштабе 200M токенов совместный рецепт масштабирования оказывается в 5.17 раз более эффективным по данным, чем стандартный. Анализируя масштабирование на более крупных датасетах (до 1.6B токенов), авторы показывают, что этот прирост эффективности, по прогнозам, останется постоянным, поскольку законы масштабирования по данным для всех рецептов убывают с одинаковой скоростью.
И тут начинается особенно интересная часть.
Вычислительные затраты на обучение и запуск больших ансамблей могут показаться непрактичными. Однако статья демонстрирует, что эти улучшения производительности можно упаковать в меньшие, эффективные модели с помощью дистилляции. Про виды дистилляции мы писали много (https://news.1rj.ru/str/gonzo_ML/117), поищите поиском по каналу. Здесь рассматриваются два:
* Дистилляция ансамбля: Ансамбль из 8 членов (с общим числом параметров 2.4B) был дистиллирован в одну модель-студента на 300M параметров. Этот студент, с в 8 раз меньшим бюджетом на инференс, сохранил 83% улучшения лосса ансамбля по сравнению с лучшей регуляризованной 300М-моделью и даже превзошёл асимптоту регуляризованного рецепта.
👍13❤3🔥3
* Самодистилляция: Ещё более удивительно, что авторы показывают, как самодистилляция (тоже упоминалась в канале не раз, один из интересных кейсов тут https://news.1rj.ru/str/gonzo_ML/202) -- когда модель на 300M параметров выступает учителем для нового 300М-студента той же архитектуры -- может привести к лучшей модели. Обучая студента на смеси реальных и синтетических данных от учителя, студент превосходит своего учителя, достигая асимптоты регуляризованного рецепта без необходимости в более крупной модели на каком-либо этапе обучения. Это не просто трюк с аугментацией данных; в статье предполагается, что это можно интерпретировать как форму неявного ансамблирования, сродни объединению исходного учителя с вновь инициализированным студентом, что позволяет студенту найти лучшее решение. Это интересный механизм аугментации данных, причём ключевым моментом является необходимость подмешивать реальные данные, чтобы избежать коллапса модели.
Статья подтверждает, что эти улучшения -- не просто артефакты лосса на валидации. Выигрыш напрямую переносится на нижестоящие задачи: лучший ансамбль превосходит лучшую нерегуляризованную модель в среднем на 9% на бенчмарках PIQA, SciQ и ARC Easy.
Более того, методы оказываются высокоэффективными в сценарии continued pre-training (CPT). При применении к математическому датасету ансамбль, обученный всего на 4B токенов данных, превзошёл базовую модель, обученную на полных 73B токенов, достигнув 17.5-кратного улучшения эффективности данных.
Остаются и вопросы. Идея асимптоты опирается на экстраполяцию степенных законов, которая , может быть шумной, и результаты следует интерпретировать как приблизительные оценки. Эксперименты, хоть и обширны, проводились на моделях до 1.4B параметров, может на других масштабах что-нибудь происходит. Тем не менее, результаты интересные.
Статья подтверждает, что эти улучшения -- не просто артефакты лосса на валидации. Выигрыш напрямую переносится на нижестоящие задачи: лучший ансамбль превосходит лучшую нерегуляризованную модель в среднем на 9% на бенчмарках PIQA, SciQ и ARC Easy.
Более того, методы оказываются высокоэффективными в сценарии continued pre-training (CPT). При применении к математическому датасету ансамбль, обученный всего на 4B токенов данных, превзошёл базовую модель, обученную на полных 73B токенов, достигнув 17.5-кратного улучшения эффективности данных.
Остаются и вопросы. Идея асимптоты опирается на экстраполяцию степенных законов, которая , может быть шумной, и результаты следует интерпретировать как приблизительные оценки. Эксперименты, хоть и обширны, проводились на моделях до 1.4B параметров, может на других масштабах что-нибудь происходит. Тем не менее, результаты интересные.
arXiv.org
Pre-training under infinite compute
Since compute grows much faster than web text available for language model pre-training, we ask how one should approach pre-training under fixed data and no compute constraints. We first show that...
1👍28❤3❤🔥1🔥1