gonzo-обзоры ML статей – Telegram
gonzo-обзоры ML статей
24.1K subscribers
2.74K photos
2 videos
3 files
1.36K links
Авторы:
Гриша Сапунов, ранее руководитель разработки Яндекс-Новостей, ныне CTO Intento. Области интересов: AI/ML/DL, биоинформатика.
Лёша Тихонов, ранее аналитик в Яндексе, автор Автопоэта, Нейронной Обороны... Области интересов: discrete domain, NLP, RL.
Download Telegram
Пир духа.

В Nature за 15 июля статья DeepMind про AlphaFold2:
https://www.nature.com/articles/d41586-021-01968-y
https://www.nature.com/articles/s41586-021-03819-2

Код выложен на гитхаб:
https://github.com/deepmind/alphafold


В Science за 15 июля статья про RoseTTAFold (писали про неё недавно, https://news.1rj.ru/str/gonzo_ML/642):
https://www.science.org/doi/abs/10.1126/science.abj8754

Этот код уже был на гитхабе ранее, когда мы про эту модель писали:
https://github.com/RosettaCommons/RoseTTAFold
Highly accurate protein structure prediction with AlphaFold
John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli & Demis Hassabis
Статья: https://www.nature.com/articles/s41586-021-03819-2
Модель: https://github.com/deepmind/alphafold

Ну вот наконец и AlphaFold2. В статье и на гитхабе новая система называется просто AlphaFold, а под названием AlphaFold2 она фигурировала на соревновании CASP14. Новая система является совершенно другой системой по сравнению со старой AlphaFold, участвовавшей на CASP13, так что будьте внимательны и не путайте.

Итак, собственно, какова структура этой системы.

На вход системы поступает последовательность аминокислот белка. Для этой последовательности ищутся эволюционные родственники и генерируется множественное выравнивание (MSA, про него мы несколько раз писали в предыдущих постах о похожих моделях). Также в базе структур белков (с 3D координатами атомов) ищутся гомологичные структуры (если есть), и они тоже поступают на вход.

Сама сеть AlphaFold напрямую предсказывает 3D координаты всех тяжёлых атомов (углероды, азоты) по входным данным.

Сеть состоит из двух частей.

Сначала ствол сети обрабатывает входы с помощью последовательности (аж 48 штук, каждый со своими весами) новых блоков под названием Evoformer (хитрый вариант трансформера). Evoformer выдаёт на выходе тензор с обработанным MSA (размера N_seq*N_res, где N_seq — число последовательностей в MSA, а N_res — число аминокислот) и тензор (размера N_res*N_res) с репрезентацией пар аминокислотных остатков.

За стволом сети следует структурный модуль (structure module), генерирующий вращения и смещения для каждого из аминокислотных остатков (инициализируются они identity вращениями и позициями в начале координат) с помощью 8 слоёв с расшаренными весами.

И структурный модуль, и вся сеть целиком итеративно улучшает свои предсказания, подавая их себе же на вход. Этот процесс называется в работе “recycling”, он выполняется трижды, и существенно повышает качество результата.

Главная хитрость Evoformer’а в обмене информацией между репрезентациями MSA и пар аминокислот, образующих по сути отдельные стримы обработки данных.

Для обработки MSA используется вариант axial attention с чередующимся вниманием по строкам и по столбцам, причём оно gated через сигмоиду. Также есть transition layer, который по сути двуслойный MLP.

Стрим для обработки репрезентаций пар аминокислот по сути представляет собой графовый трансформер, узлами графа выступают соседние аминокислоты, а операции обновления репрезентаций работают над треугольниками аминокислот (следствие из интуиции относительно необходимости соблюдения неравенства треугольника для расстояний между аминокислотами). Две основные операции там это triangle multiplicative update и triangle self-attention.

По репрезентациям MSA считается outer product между всеми позициями попарно и добавляется к соответствующим репрезентациям пар. Так происходит регулярный обмен между стримом MSA и стримом парных фич.

Структурный модуль работает с репрезентацией бэкбона белка, используя прилетающие на вход репрезентации пар и оригинальную последовательность белка из MSA. Структура бэкбона представлена N_res независимыми вращениями и трансляциями каждой конкретной аминокислоты относительно глобального фрейма. Это называется “residue gas” (как бы независимо плавающие аминокислотные остатки, которые мы пытаемся ориентировать в пространстве).
👍1
Репрезентации этого residue gas итеративно обновляются в два этапа. Сначала специальный оператор внимания под названием Invariant Point Attention (IPA) обновляет N_res активаций сети (одиночных абстрактных репрезентаций, которые изначально прилетели из стека Evorofmer’ов) и вроде как эта операция эквивариантная (но судя по абляциям IPA, и без этого норм). Затем обновляется бэкбон белка (предсказываются вращения и трансляции). И затем мелкий резнет предсказывает все (почти) торсионные углы. Из них, так понимаю, определяются уже позиции атомов. Здесь используется урезанный вариант FAPE loss (Frame-aligned point error), штрафующий за промахи в предсказании координат C_alpha атомов.

FAPE loss также является основным лоссом для обучения сети, в полном варианте он считается по всем атомам бэкбона и боковой цепи. Кроме него в сети используются разные другие дополнительные лоссы, например, BERT-подобный лосс для замаскированных элементов MSA, кросс-энтропийный лосс на распределение расстояний, и другие. В целом самое мясо находится в Supplementary Information файле, за всеми деталями надо туда.

На выходе модель также выдаёт confidence scores для каждой отдельной аминокислоты, и это используется при инференсе — прогоняется 5 обученных моделей (с различными seed) и для каждой цели выбирается наиболее уверенная модель.

Ещё из интересного, при обучении модели используется само-дистилляция. Обученная сеть используется для предсказания структур дополнительных 350К различных последовательностей из Uniclust30, из этого датасета отфильтровываются предсказания с высокой степенью уверенности, и затем та же самая архитектура обучается с нуля на смеси оригинальных данных из PDB (25%) и этого нового датасета (75%) с различными аугментациями (сабсэмплинг MSA). Это позволяет использовать кучу неразмеченных данных и существенно повышает качество.

Обучалось всё на 128 TPUv3 с батчем 128 (то есть по одной последовательности на каждом TPU) на кропах по 256 аминокислот. Потом файнтюнили на кусочках по 384 аминокислоты. Ушла неделя на обучение и ещё 4 дня на файнтюнинг.

По скорости инференса заявлено на V100 4.8 минуты для белка длиной 256 аминокислот, 9.2 минуты для 384 и 18 часов для 2500. Это типа быстрее, чем было на CASP14, потому что заюзали XLA. После CASP14 показали также, что ансамблирование сетей не очень много добавляет, зато без него всё в 8 раз быстрее.

В общем всё интересно, достойно отдельного более глубокого рассмотрения и подробного сравнения с RoseTTAFold.
The pair representation interpreted as directed edges in a graph; and triangle multiplicative update and Triangle self-attention
Structure Module
[OpenAI DALL·E] Zero-Shot Text-to-Image Generation
Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, Ilya Sutskever
Статья: https://arxiv.org/abs/2102.12092
Пост в блоге: https://openai.com/blog/dall-e/
Код (официальный, но неполный): https://github.com/openai/dall-e
Код (неофициальный, но более полный): https://github.com/lucidrains/DALLE-pytorch
Обученная модель от Сбера: https://github.com/sberbank-ai/ru-dalle

В последнее время появилось много мультимодальных трансформеров, и хочется их поразбирать. Нельзя обойти при этом наиболее известные модели, одна из которых — DALL·E от OpenAI.

DALL·E прошумел уже довольно давно, в самом начале года, но статья и все детали реализации стали доступны не сразу (в официальной репе так вообще лежит только обученный dVAE, который лишь часть от DALL·E).

Собственно, что такое DALL·E? Это декодер трансформера, который авторегрессионно умеет генерить изображения, “продолжая” заданное текстовое описание и, возможно, начальную часть изображения.

В оригинальном посте было заявлено, что это 12-миллиардная версия GPT-3, обученная на парах картинок и их описаний, но реальность сильно сложнее.

Начать стоит с того, что процесс обучения двухэтапный. На первом этапе обучается дискретный VAE (dVAE), сжимающий входную картинку 256*256 в картиночные токены на сетке 32*32, принимающие 8192 возможных значения каждый (то есть размер словаря). Это нужно для того, чтобы уменьшить количество токенов, с которыми должен дальше оперировать трансформер, и даёт уменьшение размера контекста в 192 раза. Часть высокочастотного сигнала в изображении при этом, ожидаемо, теряется, мелкие детали становятся плохо- или неразличимы, но в целом качество восстановления картинки после такого dVAE вполне достойно. Именно отсюда получается та самая своеобразная гладкость генеримых DALL·E картинок и проблемы с мелкими деталями, соответственно не для любого типа изображений DALL·E подходит, либо же процесс требует переобучения dVAE на более специальные кейсы. В dVAE никаких трансформеров нет, это свёрточный резнет.

Второй этап — это собственно трансформер. 256 кодирующих текст BPE-токенов (словарь размера 16384) конкатенируются с 1024 картиночными токенами, полученными от dVAE, и эта последовательность авторегрессионно продолжается. Сам трансформер это 64-слойный sparse transformer от тех же OpenAI (https://arxiv.org/abs/1904.10509). Он хитрый, в нём три типа шаблонов внимания: 1) text-to-text классический masked механизм как в авторегрессионных языковых моделях по типу GPT, где текущий токен не имеет права заглядывать в будущие токены; 2) image-to-text, где каждый токен изображения смотрит на все токены текста; и 3) image-to-image, где используются паттерны из sparse transformer с вниманием по строкам, столбцам и более хитрыми свёрточными шаблонами, которые применяются только в последнем self-attention слое. При этом все три типа заведены в одну единственную операцию внимания, потому что это работало лучше, чем три отдельные операции.

Авторы сначала экспериментировали на маленькой модели в 1.2B параметров и датасете в 3.3M пар картинка-текст, а потом отскейлили это на 12B модель и датасет в 250M пар (который пришлось собрать). Собственно этот скейлинг и составляет главные идейную и техническую часть работы. Идейно — показать, что обученная на большом датасете модель большого размера демонстрирует интересное поведение, а технически — заставить всё это работать, потому что вылезает много инженерных челленджей, не проявляющихся на меньших масштабах.

По признанию авторов, самая сложная часть проекта была в том, чтобы обучить большую модель на 16-битных числах (вместо обычных 32-битных). Было много всяких нестабильностей, поэтому авторы придумали хитрые методы масштабирования градиентов для защиты от underflow. Другой челлендж — распределённое обучение, где использовался тонко настроенный вариант PowerSGD. За этими (на самом деле важными, если хотите повторить) техническими деталями обращайтесь в Appendix.
Сэмплы генерились хитро, генерилось несколько кандидатов (например 32, но иногда и вплоть до 512!), которые далее отправлялись в специальную ранжирующую контрастивную модель, дающую характеризующий качество матчинга скор каждой паре текст+сгенерённое изображение. Эта модель была специально обучена под данную задачу и является важным компонентом для получения хороших результатов. Такой автоматизированный cherry-picking. Эта хитрая модель, собственно, CLIP (https://arxiv.org/abs/2103.00020), про который расскажем отдельно.

Результаты красивы. Модель неплохо генерализует и выдаёт довольно экзотические картинки, которые вряд ли могли быть в исходных датасетах. Типа “маленького ёжика в рождественском свитере, выгуливающего собаку”. Косячит она тоже забавно. Тут лучше смотреть, чем описывать, так что велкам внутрь статьи и ещё более велкам в пост, где картинок много и можно попробовать свои варианты изменений (из заранее заданных). Впрочем, эту часть многие скорее всего в январе как раз и посмотрели.

Код для репликации совершенно недостаточен потому что 1) не выложен полностью даже код моделей, есть только dVAE; 2) напрочь отсутствует часть про обучение, в которой миллион тонкостей (и не факт, кстати, что прям все они отражены в статье). Попытка репликации в репозитории lucidrains выглядит более полной.

Есть ещё попытка собрать что-то похожее от энтузиастов FLAX/JAX (https://moocaholic.medium.com/jax-a13e83f49897), но модель там маленькая (а именно в скейлинге и был смысл) и немного иной архитектуры (seq2seq часть там другая, вместо декодера sparse transformer вставили полный encoder-decoder BART, но он не sparse): https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA

UPD: Сбер обучил русскоязычные модели DALLE на 1.3B (XL) и 12B (XXL) параметров. Модель XL выложена на гитхабе: https://github.com/sberbank-ai/ru-dalle и доступна в Huggingface Transformers: https://huggingface.co/sberbank-ai/rudalle-Malevich, демо доступно на сайте https://rudalle.ru/
Результат работы dVAE
Пример схемы эмбеддингов трансформерной части
Творчество модели
Сравнение с конкурентами
Решение для масштабирования градиентов
Всем привет! Миша Бурцев проводит опрос, как кому видятся пути к Human Level AI. Если у кого есть мысли по теме, заполните, пожалуйста, анкету по ссылке: https://form.jotform.com/211134165349350

Миша обещает сделать краткий отчёт по результатам.
Давно от нас не было новостей, но по секрету скажу, что мы готовим обзор очень прикольной темы, подробности скоро!

А пока пара новостей про другие события от Grigory Sapunov:

1. Недавно сходил на подкаст к Марку Девельману, поговорили про AI, а больше даже про смысл жизни :)
https://www.uhnwidata.com/den-of-rich/grigory-sapunov

2. 10 сентября выступаю на DataFest Yerevan 2021 в 10:00 (Yerevan time, UTC+4). Расскажу про трансформеры в 2021 году, что интересного произошло и какие тренды.
https://datafest.am/#/agenda

Буду рад поболтать живьём со всеми, кто вдруг в это время будет в Ереване!