https://vitalik.ca/general/2021/06/18/verkle.html
So what is this little extra that we need as a proof? To understand that, we first need to circle back to one key detail: the hash function used to compute an inner node from its children is not a regular hash. Instead, it's a vector commitment.
A vector commitment scheme is a special type of hash function, hashing a list . But vector commitments have the special property that for a commitment and a value , it's possible to make a short proof that is the commitment to some list where the value at the i'th position is . In a Verkle proof, this short proof replaces the function of the sister nodes in a Merkle Patricia proof, giving the verifier confidence that a child node really is the child at the given position of its parent node.
So what is this little extra that we need as a proof? To understand that, we first need to circle back to one key detail: the hash function used to compute an inner node from its children is not a regular hash. Instead, it's a vector commitment.
A vector commitment scheme is a special type of hash function, hashing a list . But vector commitments have the special property that for a commitment and a value , it's possible to make a short proof that is the commitment to some list where the value at the i'th position is . In a Verkle proof, this short proof replaces the function of the sister nodes in a Merkle Patricia proof, giving the verifier confidence that a child node really is the child at the given position of its parent node.
ZK-SNARKs are hard because the verifier needs to somehow check millions of steps in a computation, without doing a piece of work to check each individual step directly (as that would take too long).
We get around this by encoding the computation into polynomials.
A single polynomial can contain an unboundedly large amount of information, and a single polynomial expression (eg. ) can "stand in" for an unboundedly large number of equations between numbers.
If you can verify the equation with polynomials, you are implicitly verifying all of the number equations (replace with any actual x-coordinate) simultaneously.
We use a special type of "hash" of a polynomial, called a polynomial commitment, to allow us to actually verify the equation between polynomials in a very short amount of time, even if the underlying polynomials are very large
We get around this by encoding the computation into polynomials.
A single polynomial can contain an unboundedly large amount of information, and a single polynomial expression (eg. ) can "stand in" for an unboundedly large number of equations between numbers.
If you can verify the equation with polynomials, you are implicitly verifying all of the number equations (replace with any actual x-coordinate) simultaneously.
We use a special type of "hash" of a polynomial, called a polynomial commitment, to allow us to actually verify the equation between polynomials in a very short amount of time, even if the underlying polynomials are very large
Now since you are using TypeScript as a tool to help enforce some rules at design time
اگه از یه پراپرتی پرایوت خارج از کلاس تو تایپ اسکریپت استفاده کنی
تایپ اسکریپت ide جیغ میزنن اما اگه به زور کامپایلش کنی به js اکی هستش کد و اجرا میشه بدون مشکل چون js اکسس مودیفایر ها رو نمیشناسه
سر همین جمله اول جمله زیبا و کاربردی ای هستش :))
اگه از یه پراپرتی پرایوت خارج از کلاس تو تایپ اسکریپت استفاده کنی
تایپ اسکریپت ide جیغ میزنن اما اگه به زور کامپایلش کنی به js اکی هستش کد و اجرا میشه بدون مشکل چون js اکسس مودیفایر ها رو نمیشناسه
سر همین جمله اول جمله زیبا و کاربردی ای هستش :))
#research
#Do
eth privacy:
deterministic change on smart wallet admin key and this is deterministic just for the owner of the previous key + gasless transaction aproachs
برگرد ببین راهی هست که بتونی این deterministic change بودن رو پیاده سازی کنی
ببین تورنادو کش چجوری آدرس مقصد رو از کاربر دریافت میکنه جوری که لو نره کدوم ادرس رو کدوم واریز کننده داده ( شاید بتونه این جواب برای سوال بالات باشه)
#Do
eth privacy:
deterministic change on smart wallet admin key and this is deterministic just for the owner of the previous key + gasless transaction aproachs
برگرد ببین راهی هست که بتونی این deterministic change بودن رو پیاده سازی کنی
ببین تورنادو کش چجوری آدرس مقصد رو از کاربر دریافت میکنه جوری که لو نره کدوم ادرس رو کدوم واریز کننده داده ( شاید بتونه این جواب برای سوال بالات باشه)
#check
#do
انقلاب صنعتی پنجم؟؟
چهارمش که این همه داد و قال براش داشتن مگه انجام شد؟
https://www.linkedin.com/posts/karrari_%D8%A7%D9%86%D9%82%D9%84%D8%A7%D8%A8-%D8%B5%D9%86%D8%B9%D8%AA%DB%8C-%D9%BE%D9%86%D8%AC%D9%85-industry4iran-industry50-activity-6870043404944842752-_mA7
#do
انقلاب صنعتی پنجم؟؟
چهارمش که این همه داد و قال براش داشتن مگه انجام شد؟
https://www.linkedin.com/posts/karrari_%D8%A7%D9%86%D9%82%D9%84%D8%A7%D8%A8-%D8%B5%D9%86%D8%B9%D8%AA%DB%8C-%D9%BE%D9%86%D8%AC%D9%85-industry4iran-industry50-activity-6870043404944842752-_mA7
Linkedin
Habib Karrari on LinkedIn: انقلاب صنعتی پنجم Industry4iran industry5.0 | 15 comments
#Industry5.0
حدود ۷ ماه قبل، نسخه انگلیسی فایل صنعت ۵.۰ اتحادیه اروپا را اینجا منتشر کردم:
https://lnkd.in/dHRDVzaz
(پیشنهاد میدهم کامنتهای مربوطه رو ... 15 comments on LinkedIn
حدود ۷ ماه قبل، نسخه انگلیسی فایل صنعت ۵.۰ اتحادیه اروپا را اینجا منتشر کردم:
https://lnkd.in/dHRDVzaz
(پیشنهاد میدهم کامنتهای مربوطه رو ... 15 comments on LinkedIn
Forwarded from Ziya
YouTube
Scaling Bitcoin Lightning Network to Billions with Christian Decker - LNJ047
Trannoscript: https://sicksub.network/LNJ047Trannoscript
This is the 47th episode of the Lightning Junkies podcast. In this episode we have Christian Decker, the final boss of the Lightning Network or otherwise known as Dr. Bitcoin. He’s known to have been…
This is the 47th episode of the Lightning Junkies podcast. In this episode we have Christian Decker, the final boss of the Lightning Network or otherwise known as Dr. Bitcoin. He’s known to have been…
Forwarded from Hamid list
#Bitcoin
#Do
proof of work VS nakamoto algorithm
https://courses.grainger.illinois.edu/ece598pv/sp2021/lectureslides2021/ECE_598_PV_course_notes3.pdf
#Do
proof of work VS nakamoto algorithm
https://courses.grainger.illinois.edu/ece598pv/sp2021/lectureslides2021/ECE_598_PV_course_notes3.pdf