اتاق ریاضی علامه حلی
معمای گاوصندوق اسرار آمیز برای مشاهده معما روی گاوصندوق اسرارآمیز کلیک کنید. @HelliMathroom #معمای_ریاضی
پاسخ معمای گاوصندوق اسرار آمیز
ایزل ابتدا طلسمی بر روی گاوصندوق میخواند تا مرال نتواند به محتوای آن دسترسی پیدا کند و سپس گاوصندوق را با کمک سیاهبال به تاران میفرستد. وقتی گاوصندوق به دست تاران میرسد، او طلسم دیگری بر روی آن میخواند و سپس دوباره آن را با سیاهبال برای ایزل بازمیفرستد. ایزل، پس از دریافت گاوصندوق، طلسم خود را از روی آن برمیدارد و برای آخرین بار گاوصندوق را به تاران میفرستد. اینبار، چون طلسم تاران هنوز بر روی گاوصندوق باقی مانده است، گاوصندوق بدون هیچ خطری به دست تاران میرسد. حال، تاران طلسم خود را باطل میکند و میتواند به محتوای جواهرات افسانهای گاوصندوق دسترسی پیدا کند. بدین ترتیب، گاوصندوق با امنیت کامل به مقصد میرسد و مرال از دستیابی به گنجینهی اسرارآمیز بازمیماند.
@HelliMathroom
#معمای_ریاضی
@HelliMathroom
#معمای_ریاضی
👍5🤯2🗿2
اتاق ریاضی علامه حلی
معمای گاوصندوق اسرار آمیز برای مشاهده معما روی گاوصندوق اسرارآمیز کلیک کنید. @HelliMathroom #معمای_ریاضی
راز گاوصندوق اسرارآمیز
پس از اینکه تاران به محتوای گاوصندوق دست یافت، با چشمانی حیران به انبوهی از سکههای طلایی خیره شد. بر روی هر سکه، عددی طبیعی حکاکی شده بود که در نور جادویی صندوق میدرخشید. اما در میان این گنجینهی طلایی، طوماری مرموز و باستانی نیز قرار داشت که گویا راز حقیقی گاوصندوق را در دل خود پنهان کرده بود.
تاران به آرامی طومار را گشود و خطوط رمزآلود آن را با دقت خواند. متن این طومار بدین شرح است:
تاران که به عمق این راز پی برده بود، با لبخندی زیرکانه زمزمه کرد: "این یعنی تمامی اعداد طبیعی اینجا حاضرند." او دریافت که اگر سکهای با عدد "یک" در صندوق وجود داشته باشد، آنگاه طبق اصل اول طومار، سکهی "دو" نیز در صندوق خواهد بود، و بعد از آن سکهی "سه"، و همینطور بیپایان. زنجیرهای از اعداد که تمامی اعداد طبیعی را در خود جای میداد.
تاران سرشار از هیجان و شوق، به عظمت این ثروت بیکران پی برد. گاوصندوقی که نه فقط چند سکه، بلکه گنجینهای بیپایان از طلای خالص، به تعداد تمام اعداد طبیعی را در خود جای داده بود. این همان راز افسانهای گاوصندوق بود: اصل استقرای ریاضی
@HelliMathroom
#دانستنیهای_ریاضی
پس از اینکه تاران به محتوای گاوصندوق دست یافت، با چشمانی حیران به انبوهی از سکههای طلایی خیره شد. بر روی هر سکه، عددی طبیعی حکاکی شده بود که در نور جادویی صندوق میدرخشید. اما در میان این گنجینهی طلایی، طوماری مرموز و باستانی نیز قرار داشت که گویا راز حقیقی گاوصندوق را در دل خود پنهان کرده بود.
تاران به آرامی طومار را گشود و خطوط رمزآلود آن را با دقت خواند. متن این طومار بدین شرح است:
دو اصل گاو صندوقسوال(راز صندوق): محتویات این صندوق چیست؟
اصل اول: اگر سکهای با یک عدد طبیعی در گاوصندوق باشد، آنگاه سکهای با عدد بعد از آن نیز در صندوق حضور دارد.
اصل دوم: سکهای که عدد "یک" بر آن حک شده، هماکنون در گاوصندوق است.
تاران سرشار از هیجان و شوق، به عظمت این ثروت بیکران پی برد. گاوصندوقی که نه فقط چند سکه، بلکه گنجینهای بیپایان از طلای خالص، به تعداد تمام اعداد طبیعی را در خود جای داده بود. این همان راز افسانهای گاوصندوق بود: اصل استقرای ریاضی
@HelliMathroom
#دانستنیهای_ریاضی
👍5🔥1
معما محفل خیانتکاران هیتلر
هیتلر گروهی صد نفره از ریاضیدانان آلمانی را دستگیر کرده و آنها را به زندانی مرموز میبرد. او به آنها اعلام میکند که تعدادی از میان آنها خائن هستند، اما نمیگوید چه تعداد. بر روی پیشانی هر یک از افراد علامتی مهر شده که نشان میدهد خائن است یا خیر، اما هیچکس نمیتواند علامت پیشانی خودش را ببیند، تنها میتوانند علامت دیگران را مشاهده کنند. ارتباط مستقیم یا غیرمستقیم میان آنها ممنوع است و هیچکس نمیتواند از دیگری بپرسد که آیا خودش خائن است یا نه.
هر روز، تمام زندانیها در یک گردهمایی کوتاه همدیگر را میبینند و سپس به سلولهایشان بازمیگردند. هیتلر به آنها میگوید که خائنها باید با استفاده از هوش ریاضیشان خود را تشخیص دهند و به محض اینکه متوجه شدند خائن هستند، در همان روز خودکشی کنند. او همچنین میگوید که فردای روزی که تمام خائنین خودکشی کردند، باز خواهد گشت و آزادی را به بقیه اعلام خواهد کرد.
در روز چهاردهم، هیتلر به زندانیها میگوید که هر کس زنده مانده است، آزاد است. تعداد خائنین چند نفر بوده است؟
@HelliMathroom
#معمای_ریاضی
هیتلر گروهی صد نفره از ریاضیدانان آلمانی را دستگیر کرده و آنها را به زندانی مرموز میبرد. او به آنها اعلام میکند که تعدادی از میان آنها خائن هستند، اما نمیگوید چه تعداد. بر روی پیشانی هر یک از افراد علامتی مهر شده که نشان میدهد خائن است یا خیر، اما هیچکس نمیتواند علامت پیشانی خودش را ببیند، تنها میتوانند علامت دیگران را مشاهده کنند. ارتباط مستقیم یا غیرمستقیم میان آنها ممنوع است و هیچکس نمیتواند از دیگری بپرسد که آیا خودش خائن است یا نه.
هر روز، تمام زندانیها در یک گردهمایی کوتاه همدیگر را میبینند و سپس به سلولهایشان بازمیگردند. هیتلر به آنها میگوید که خائنها باید با استفاده از هوش ریاضیشان خود را تشخیص دهند و به محض اینکه متوجه شدند خائن هستند، در همان روز خودکشی کنند. او همچنین میگوید که فردای روزی که تمام خائنین خودکشی کردند، باز خواهد گشت و آزادی را به بقیه اعلام خواهد کرد.
در روز چهاردهم، هیتلر به زندانیها میگوید که هر کس زنده مانده است، آزاد است. تعداد خائنین چند نفر بوده است؟
@HelliMathroom
#معمای_ریاضی
👍4🔥3🗿3❤2
❓سوالات ۷،۸،۹ اتاق ریاضی
🛑 شیوه ارسال پاسخها:
هر پاسخ را به صورت جداگانه به آدرس ایمیل اتاق ریاضی ارسال کنید. موضوع ایمیل باید مطابق فرمت زیر باشد و در متن ایمیل نام و نام خانوادگی و شماره کلاس خود را نیز ذکر کنید.
موضوع: پاسخ سوال [شماره سوال] اتاق ریاضی_ [نام و نام خانوادگی] _ [شماره کلاس]
❗️ پاسخها باید خوانا و شفاف باشند و حل و اثبات هر سوال بهطور کامل و دقیق نوشته شود. پاسخهای ناقص، بدون استدلال و یا ناخوانا پذیرفته نمیشوند.
⌛️ مهلت ارسال: ۲ آذر
📬 ایمیل اتاق ریاضی: Hellimathroom@gmail.com
@HelliMathroom
#سوالات_هفتگی_اتاقریاضی
🛑 شیوه ارسال پاسخها:
هر پاسخ را به صورت جداگانه به آدرس ایمیل اتاق ریاضی ارسال کنید. موضوع ایمیل باید مطابق فرمت زیر باشد و در متن ایمیل نام و نام خانوادگی و شماره کلاس خود را نیز ذکر کنید.
موضوع: پاسخ سوال [شماره سوال] اتاق ریاضی_ [نام و نام خانوادگی] _ [شماره کلاس]
❗️ پاسخها باید خوانا و شفاف باشند و حل و اثبات هر سوال بهطور کامل و دقیق نوشته شود. پاسخهای ناقص، بدون استدلال و یا ناخوانا پذیرفته نمیشوند.
⌛️ مهلت ارسال: ۲ آذر
📬 ایمیل اتاق ریاضی: Hellimathroom@gmail.com
@HelliMathroom
#سوالات_هفتگی_اتاقریاضی
🤩7👍1🤔1
اتاق ریاضی علامه حلی
❓سوالات ۷،۸،۹ اتاق ریاضی 🛑 شیوه ارسال پاسخها: هر پاسخ را به صورت جداگانه به آدرس ایمیل اتاق ریاضی ارسال کنید. موضوع ایمیل باید مطابق فرمت زیر باشد و در متن ایمیل نام و نام خانوادگی و شماره کلاس خود را نیز ذکر کنید. موضوع: پاسخ سوال [شماره سوال] اتاق ریاضی_…
اصلاحیه
سوال ۷:
* چه کسی استراتژی نباختن دارد؟
یعنی یا می برد یا در بدترین حالت مساوی می کند.
سوال ۷:
* چه کسی استراتژی نباختن دارد؟
یعنی یا می برد یا در بدترین حالت مساوی می کند.
👍4🔥1🤨1
اعداد حقیقی واقعا ترسناک هستند!!!...
کمی که به ماهیت اعداد حقیقی فکر می کنیم زوایای تاریک و بحث انگیزی به میان میاید.
چیزهایی که از بچگی به ما القا شده که بدیهی هستند ولی این طور نیست.
برای مثال به ما گفتن محور اعداد حقیقی، یک خط پیوسته است. اما آیا واقعا این طور است؟ از کجا معلوم که سوراخ نداشته باشد و ناپیوسته باشد؟
یا مثلا آیا چنین چیز هایی مثل
0.11011001100011000011000001...
عدد هستند؟
@HelliMathroom
#کمدی_ریاضی
کمی که به ماهیت اعداد حقیقی فکر می کنیم زوایای تاریک و بحث انگیزی به میان میاید.
چیزهایی که از بچگی به ما القا شده که بدیهی هستند ولی این طور نیست.
برای مثال به ما گفتن محور اعداد حقیقی، یک خط پیوسته است. اما آیا واقعا این طور است؟ از کجا معلوم که سوراخ نداشته باشد و ناپیوسته باشد؟
یا مثلا آیا چنین چیز هایی مثل
0.11011001100011000011000001...
عدد هستند؟
@HelliMathroom
#کمدی_ریاضی
🔥8👍2🤔2🤯2🤨2
❓سوالات ۱۰،۱۱،۱۲ اتاق ریاضی
🛑 شیوه ارسال پاسخها:
هر پاسخ را به صورت جداگانه به آدرس ایمیل اتاق ریاضی ارسال کنید. موضوع ایمیل باید مطابق فرمت زیر باشد و در متن ایمیل نام و نام خانوادگی و شماره کلاس خود را نیز ذکر کنید.
موضوع: پاسخ سوال [شماره سوال] اتاق ریاضی_ [نام و نام خانوادگی] _ [شماره کلاس]
❗️ پاسخها باید خوانا و شفاف باشند و حل و اثبات هر سوال بهطور کامل و دقیق نوشته شود. پاسخهای ناقص، بدون استدلال و یا ناخوانا پذیرفته نمیشوند.
⌛️ مهلت ارسال: ۱۶ آذر
📬 ایمیل اتاق ریاضی: Hellimathroom@gmail.com
@HelliMathroom
#سوالات_هفتگی_اتاقریاضی
🛑 شیوه ارسال پاسخها:
هر پاسخ را به صورت جداگانه به آدرس ایمیل اتاق ریاضی ارسال کنید. موضوع ایمیل باید مطابق فرمت زیر باشد و در متن ایمیل نام و نام خانوادگی و شماره کلاس خود را نیز ذکر کنید.
موضوع: پاسخ سوال [شماره سوال] اتاق ریاضی_ [نام و نام خانوادگی] _ [شماره کلاس]
❗️ پاسخها باید خوانا و شفاف باشند و حل و اثبات هر سوال بهطور کامل و دقیق نوشته شود. پاسخهای ناقص، بدون استدلال و یا ناخوانا پذیرفته نمیشوند.
⌛️ مهلت ارسال: ۱۶ آذر
📬 ایمیل اتاق ریاضی: Hellimathroom@gmail.com
@HelliMathroom
#سوالات_هفتگی_اتاقریاضی
👍3
اتاق ریاضی علامه حلی
❓سوالات ۴،۵،۶ اتاق ریاضی 🛑 شیوه ارسال پاسخها: هر پاسخ را به صورت جداگانه به آدرس ایمیل اتاق ریاضی ارسال کنید. موضوع ایمیل باید مطابق فرمت زیر باشد و در متن ایمیل نام و نام خانوادگی و شماره کلاس خود را نیز ذکر کنید. موضوع: پاسخ سوال [شماره سوال] اتاق ریاضی_…
مالک سوال 4: کوهنورد
سید محمد طاها حسینی کمال آبادی
مالک سوال 5: مشاهده جالب
پارسا آقاسی
مالک سوال 6: تعداد اعداد اول
هیبرد همتیان
*راه حل این سری از سوالات و سری بعدی با تاخیر ارسال میشود.
*تا زمانی که مالک یک سوال اعلام نشده است، فرصت برای ارسال پاسخ آن سوال وجود دارد. تا زمانی که آن سوال مالک پیدا کند.
@HelliMathroom
#سوالات_هفتگی_اتاقریاضی
سید محمد طاها حسینی کمال آبادی
مالک سوال 5: مشاهده جالب
پارسا آقاسی
مالک سوال 6: تعداد اعداد اول
هیبرد همتیان
*راه حل این سری از سوالات و سری بعدی با تاخیر ارسال میشود.
*تا زمانی که مالک یک سوال اعلام نشده است، فرصت برای ارسال پاسخ آن سوال وجود دارد. تا زمانی که آن سوال مالک پیدا کند.
@HelliMathroom
#سوالات_هفتگی_اتاقریاضی
🔥2👍1
"ریاضی مثل ترشی میمونه هرچی از اون چیزی که یادگرفتی میگذره بیشتر جا میوفته!..."
دکتر سید علی مدنیزاده
رئیس دانشکده مدیریت و اقتصاد دانشگاه شریف
@HelliMathroom
#کمدی_ریاضی
دکتر سید علی مدنیزاده
رئیس دانشکده مدیریت و اقتصاد دانشگاه شریف
@HelliMathroom
#کمدی_ریاضی
🔥9👍3❤1😐1
اتاق ریاضی علامه حلی
❓سوالات ۱۰،۱۱،۱۲ اتاق ریاضی 🛑 شیوه ارسال پاسخها: هر پاسخ را به صورت جداگانه به آدرس ایمیل اتاق ریاضی ارسال کنید. موضوع ایمیل باید مطابق فرمت زیر باشد و در متن ایمیل نام و نام خانوادگی و شماره کلاس خود را نیز ذکر کنید. موضوع: پاسخ سوال [شماره سوال] اتاق…
*سوالهای ۱۱ و ۱۲ اتاق ریاضی حریف میطلبه
مهلت ارسال پاسخ ۱۶ آذر
مهلت ارسال پاسخ ۱۶ آذر
🤔5🗿2
اتاق ریاضی علامه حلی برگزار میکند!...
🔸️ترکیبیات زیبا | بررسی چند قضیه زیبا در دنیای ترکیبیات
🔸 سخنران: دکتر محسن جمالی | استاد ریاضی دانشگاه صنعتی شریف
📅 زمان: چهارشنبه ۱۴ آذر ۱۴۰۳ | ساعت ۲:۴۵
📍مکان برگزاری: دبیرستان علامه حلی تهران | سالن استاد آراسته
🔺️شرکت برای عموم آزاد است!
@HelliMathroom
#رویداد
🔸️ترکیبیات زیبا | بررسی چند قضیه زیبا در دنیای ترکیبیات
🔸 سخنران: دکتر محسن جمالی | استاد ریاضی دانشگاه صنعتی شریف
📅 زمان: چهارشنبه ۱۴ آذر ۱۴۰۳ | ساعت ۲:۴۵
📍مکان برگزاری: دبیرستان علامه حلی تهران | سالن استاد آراسته
🔺️شرکت برای عموم آزاد است!
@HelliMathroom
#رویداد
👍5🔥3🤩2
اتاق ریاضی علامه حلی
اتاق ریاضی علامه حلی برگزار میکند!... 🔸️ترکیبیات زیبا | بررسی چند قضیه زیبا در دنیای ترکیبیات 🔸 سخنران: دکتر محسن جمالی | استاد ریاضی دانشگاه صنعتی شریف 📅 زمان: چهارشنبه ۱۴ آذر ۱۴۰۳ | ساعت ۲:۴۵ 📍مکان برگزاری: دبیرستان علامه حلی تهران | سالن استاد آراسته…
یادآوری رویداد:
ترکیبیات زیبا
دکتر محسن جمالی
امروز ساعت ۲:۴۵
دبیرستان علامه حلی، سالن استاد آراسته
ترکیبیات زیبا
دکتر محسن جمالی
امروز ساعت ۲:۴۵
دبیرستان علامه حلی، سالن استاد آراسته
🔥4❤1
معمای گوش،بوش،دوش
هر دوش یک بوش است، نصف گوشها، بوش هستند، نصف بوشها، دوشاند. چهل گوش و سی دوش داریم. هیچ گوشی، دوش نیست. چند بوش، نه دوشاند و نه گوش؟
@HelliMathroom
#معمای_ریاضی
هر دوش یک بوش است، نصف گوشها، بوش هستند، نصف بوشها، دوشاند. چهل گوش و سی دوش داریم. هیچ گوشی، دوش نیست. چند بوش، نه دوشاند و نه گوش؟
@HelliMathroom
#معمای_ریاضی
🗿3😐2
اتاق ریاضی علامه حلی
معما محفل خیانتکاران هیتلر هیتلر گروهی صد نفره از ریاضیدانان آلمانی را دستگیر کرده و آنها را به زندانی مرموز میبرد. او به آنها اعلام میکند که تعدادی از میان آنها خائن هستند، اما نمیگوید چه تعداد. بر روی پیشانی هر یک از افراد علامتی مهر شده که نشان میدهد…
پاسخ معمای محفل خیانتکاران هیتلر
اگر تنها یک خائن باشد، او هیچ علامتی بر پیشانی دیگران نمیبیند و به این نتیجه میرسد که خودش خائن است و در همان روز خودکشی میکند(روز اول)
اگر دو خائن باشند، هر یک از آنها یک خائن دیگر میبیند و اگر خائن دیگری در روز اول خودکشی نکرده نتیجه میگیرند که خودشان نیز خائن هستند و در روز دوم خودکشی میکنند.
به طور مشابه اگر T خائن وجود داشته باشد، آنها در روز T خودکشی میکنند. زیرا انتظار دارند که اگر تعداد خائنها کمتر از T باشد، آن روزها خودکشی رخ میداد. اما چون این اتفاق نیوفتاده نتیجه میگیرند که تعداد خائنین T است.
درنتیجه چون هیتلر در روز چهاردهم آزادی را اعلام کرده یعنی روزی پس از خودکشی خائنها، پس تعداد خائنین ۱۳ نفر بوده است.
@HelliMathroom
#معمای_ریاضی
اگر دو خائن باشند، هر یک از آنها یک خائن دیگر میبیند و اگر خائن دیگری در روز اول خودکشی نکرده نتیجه میگیرند که خودشان نیز خائن هستند و در روز دوم خودکشی میکنند.
به طور مشابه اگر T خائن وجود داشته باشد، آنها در روز T خودکشی میکنند. زیرا انتظار دارند که اگر تعداد خائنها کمتر از T باشد، آن روزها خودکشی رخ میداد. اما چون این اتفاق نیوفتاده نتیجه میگیرند که تعداد خائنین T است.
درنتیجه چون هیتلر در روز چهاردهم آزادی را اعلام کرده یعنی روزی پس از خودکشی خائنها، پس تعداد خائنین ۱۳ نفر بوده است.
@HelliMathroom
#معمای_ریاضی
🤯5🔥3🤣2👌1🗿1
❓سوالات ۱۳،۱۴،۱۵ اتاق ریاضی
🛑 شیوه ارسال پاسخها:
هر پاسخ را به صورت جداگانه به آدرس ایمیل اتاق ریاضی ارسال کنید. موضوع ایمیل باید مطابق فرمت زیر باشد و در متن ایمیل نام و نام خانوادگی و شماره کلاس خود را نیز ذکر کنید.
موضوع: پاسخ سوال [شماره سوال] اتاق ریاضی_ [نام و نام خانوادگی] _ [شماره کلاس]
❗️ پاسخها باید خوانا و شفاف باشند و حل و اثبات هر سوال بهطور کامل و دقیق نوشته شود. پاسخهای ناقص، بدون استدلال و یا ناخوانا پذیرفته نمیشوند.
*تبصره: تا زمانی که مالکیت یک سوال مشخص نشده فرصت برای ارسال پاسخ وجود دارد. حتی اگر از زمان ارسال پاسخ گذشته باشد.
⌛️ مهلت ارسال: ۲۴ آذر
📬 ایمیل اتاق ریاضی: Hellimathroom@gmail.com
@HelliMathroom
#سوالات_هفتگی_اتاقریاضی
🛑 شیوه ارسال پاسخها:
هر پاسخ را به صورت جداگانه به آدرس ایمیل اتاق ریاضی ارسال کنید. موضوع ایمیل باید مطابق فرمت زیر باشد و در متن ایمیل نام و نام خانوادگی و شماره کلاس خود را نیز ذکر کنید.
موضوع: پاسخ سوال [شماره سوال] اتاق ریاضی_ [نام و نام خانوادگی] _ [شماره کلاس]
❗️ پاسخها باید خوانا و شفاف باشند و حل و اثبات هر سوال بهطور کامل و دقیق نوشته شود. پاسخهای ناقص، بدون استدلال و یا ناخوانا پذیرفته نمیشوند.
*تبصره: تا زمانی که مالکیت یک سوال مشخص نشده فرصت برای ارسال پاسخ وجود دارد. حتی اگر از زمان ارسال پاسخ گذشته باشد.
⌛️ مهلت ارسال: ۲۴ آذر
📬 ایمیل اتاق ریاضی: Hellimathroom@gmail.com
@HelliMathroom
#سوالات_هفتگی_اتاقریاضی
👍2🗿2🤯1
معمای سکه مخفی
12 سکه که ظاهر یکسانی دارند داریم که یکی از آنها وزن متفاوتی نسبت به بقیه دارد(کمتر یا بیشتر). همچنین یک ترازوی دو کفهای در اختیار داریم. با استفاده از ترازو، تنها با سه بار وزن کردن، سکه متفاوت را شناسایی کنید و مشخص کنید سکه متفاوت سنگینتر از مابقی سکهها است یا سبکتر.
اگر در نظر داشته باشیم که هر بار وزن کردن سه احتمال بیشتر، کمتر و مساوی دارد، در مجموع ۲۷ حالت ممکن است. از طرف دیگر، برای تشخیص سبکتر یا سنگین تر بودن ۱۲ سکه، تنها ۲۴ حالت کافی است. بنابراین، معما حداقل یک جواب دارد.
@HelliMathematics
#معمای_ریاضی
12 سکه که ظاهر یکسانی دارند داریم که یکی از آنها وزن متفاوتی نسبت به بقیه دارد(کمتر یا بیشتر). همچنین یک ترازوی دو کفهای در اختیار داریم. با استفاده از ترازو، تنها با سه بار وزن کردن، سکه متفاوت را شناسایی کنید و مشخص کنید سکه متفاوت سنگینتر از مابقی سکهها است یا سبکتر.
اگر در نظر داشته باشیم که هر بار وزن کردن سه احتمال بیشتر، کمتر و مساوی دارد، در مجموع ۲۷ حالت ممکن است. از طرف دیگر، برای تشخیص سبکتر یا سنگین تر بودن ۱۲ سکه، تنها ۲۴ حالت کافی است. بنابراین، معما حداقل یک جواب دارد.
@HelliMathematics
#معمای_ریاضی
🤔2
اتاق ریاضی علامه حلی
❓سوالات ۱۳،۱۴،۱۵ اتاق ریاضی 🛑 شیوه ارسال پاسخها: هر پاسخ را به صورت جداگانه به آدرس ایمیل اتاق ریاضی ارسال کنید. موضوع ایمیل باید مطابق فرمت زیر باشد و در متن ایمیل نام و نام خانوادگی و شماره کلاس خود را نیز ذکر کنید. موضوع: پاسخ سوال [شماره سوال] اتاق…
*مهلت ارسال پاسخ سوالات 13,14,15 تا 1 دی ماه تمدید شد.
❤7