🎉🥳DataFest2020 THIS WEEK🥳🎉
Get reeeeeeady! You probably noticed that we published LESS content than usual because we were preparing something speciiiiiiialll.
Now we present you amazing: https://fest.ai
Open!
Free!
Online!
Data Science event open for everyone!
Book upcoming weekends for something worthy!
Link: https://fest.ai/2020/
Get reeeeeeady! You probably noticed that we published LESS content than usual because we were preparing something speciiiiiiialll.
Now we present you amazing: https://fest.ai
Open!
Free!
Online!
Data Science event open for everyone!
Book upcoming weekends for something worthy!
Link: https://fest.ai/2020/
fest.ai
Data Fest
Largest free and open Data Science conference
Forwarded from Catalyst | Community
Official announcement 🎉
We are launching new open source deep learning course with Catalyst.
Course notebooks and assigments will be in English. Lectures and seminar videos - in Russian (we are working on their translation).
Catalyst is a PyTorch ecosystem framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation and codebase reuse. This means that you can seamlessly run training loop with metrics, model checkpointing, advanced logging and distributed training support without the boilerplate code.
In this course we will dive into back-propagation algorithm. After that we will go through computer vision, generative adversarial networks and metric learning tasks. We will also talk about NLP and RecSys best practices with RL applications for them. Last but not least, we will speak about day-to-day engineering tricks, that every MLE should know about. During the course you will need to pass several kaggle competitions and deploy our own machine learning microservice in the end of the course.
Join our slack and let's accelerate your DL RnD with Catalyst 🚀
Github: https://github.com/catalyst-team/dl-course
Stepik: https://stepik.org/course/83344
Slack: https://join.slack.com/t/catalyst-team-core/shared_invite/zt-d9miirnn-z86oKDzFMKlMG4fgFdZafw
We are launching new open source deep learning course with Catalyst.
Course notebooks and assigments will be in English. Lectures and seminar videos - in Russian (we are working on their translation).
Catalyst is a PyTorch ecosystem framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation and codebase reuse. This means that you can seamlessly run training loop with metrics, model checkpointing, advanced logging and distributed training support without the boilerplate code.
In this course we will dive into back-propagation algorithm. After that we will go through computer vision, generative adversarial networks and metric learning tasks. We will also talk about NLP and RecSys best practices with RL applications for them. Last but not least, we will speak about day-to-day engineering tricks, that every MLE should know about. During the course you will need to pass several kaggle competitions and deploy our own machine learning microservice in the end of the course.
Join our slack and let's accelerate your DL RnD with Catalyst 🚀
Github: https://github.com/catalyst-team/dl-course
Stepik: https://stepik.org/course/83344
Slack: https://join.slack.com/t/catalyst-team-core/shared_invite/zt-d9miirnn-z86oKDzFMKlMG4fgFdZafw
International AI Finland virtual conference 30.9.2020
The AI Finland 2020 event is an international virtual conference focusing on business research collaboration in AI. The aim is to create an AI Finland concept that brings together companies and top-level research instances in different themes and areas each year. The AI Finland event starts in Tampere, the heart of Finnish industry scene, and focuses thus on sustainable smart production.
https://tampere.ai/en/ai-finland-2020-en/
The AI Finland 2020 event is an international virtual conference focusing on business research collaboration in AI. The aim is to create an AI Finland concept that brings together companies and top-level research instances in different themes and areas each year. The AI Finland event starts in Tampere, the heart of Finnish industry scene, and focuses thus on sustainable smart production.
https://tampere.ai/en/ai-finland-2020-en/
Major new features of the 3.9 series, compared to 3.8
Some of the new major new features and changes in Python 3.9 are:
- PEP 573, Module State Access from C Extension Methods
- PEP 584, Union Operators in dict
- PEP 585, Type Hinting Generics In Standard Collections
- PEP 593, Flexible function and variable annotations
- PEP 602, Python adopts a stable annual release cadence
- PEP 614, Relaxing Grammar Restrictions On Decorators
- PEP 615, Support for the IANA Time Zone Database in the Standard Library
- PEP 616, String methods to remove prefixes and suffixes
- PEP 617, New PEG parser for CPython
- BPO 38379, garbage collection does not block on resurrected objects;
- BPO 38692, os.pidfd_open added that allows process management without races and signals;
- BPO 39926, Unicode support updated to version 13.0.0;
- BPO 1635741, when Python is initialized multiple times in the same process, it does not leak memory anymore;
- A number of Python builtins (range, tuple, set, frozenset, list, dict) are now sped up using PEP 590 vectorcall;
- A number of Python modules (_abc, audioop, _bz2, _codecs, _contextvars, _crypt, _functools, _json, _locale, operator, resource, time, _weakref) now use multiphase initialization as defined by PEP 489;
- A number of standard library modules (audioop, ast, grp, _hashlib, pwd, _posixsubprocess, random, select, struct, termios, zlib) are now using the stable ABI defined by PEP 384.
Some of the new major new features and changes in Python 3.9 are:
- PEP 573, Module State Access from C Extension Methods
- PEP 584, Union Operators in dict
- PEP 585, Type Hinting Generics In Standard Collections
- PEP 593, Flexible function and variable annotations
- PEP 602, Python adopts a stable annual release cadence
- PEP 614, Relaxing Grammar Restrictions On Decorators
- PEP 615, Support for the IANA Time Zone Database in the Standard Library
- PEP 616, String methods to remove prefixes and suffixes
- PEP 617, New PEG parser for CPython
- BPO 38379, garbage collection does not block on resurrected objects;
- BPO 38692, os.pidfd_open added that allows process management without races and signals;
- BPO 39926, Unicode support updated to version 13.0.0;
- BPO 1635741, when Python is initialized multiple times in the same process, it does not leak memory anymore;
- A number of Python builtins (range, tuple, set, frozenset, list, dict) are now sped up using PEP 590 vectorcall;
- A number of Python modules (_abc, audioop, _bz2, _codecs, _contextvars, _crypt, _functools, _json, _locale, operator, resource, time, _weakref) now use multiphase initialization as defined by PEP 489;
- A number of standard library modules (audioop, ast, grp, _hashlib, pwd, _posixsubprocess, random, select, struct, termios, zlib) are now using the stable ABI defined by PEP 384.
Python Enhancement Proposals (PEPs)
PEP 573 – Module State Access from C Extension Methods | peps.python.org
This PEP proposes to add a way for CPython extension methods to access context, such as the state of the modules they are defined in.
DataScienceLab
Major new features of the 3.9 series, compared to 3.8 Some of the new major new features and changes in Python 3.9 are: - PEP 573, Module State Access from C Extension Methods - PEP 584, Union Operators in dict - PEP 585, Type Hinting Generics In Standard…
PEP 584 — new operator "|" that can be used to merge two dictionaries
DataScienceLab
Major new features of the 3.9 series, compared to 3.8 Some of the new major new features and changes in Python 3.9 are: - PEP 573, Module State Access from C Extension Methods - PEP 584, Union Operators in dict - PEP 585, Type Hinting Generics In Standard…
PEP 584 — another new operator "|=" will let you update dictionaries.
سلام
آزمایشگاه علوم داده برای یک پروژه صنعتی نیاز به یک نفر آشنا به تهیه طرح کسب و کار (business plan) و آشنا به نرم افزار Comfar است. علاقمندان با من تماس بگیرند.
آزمایشگاه علوم داده برای یک پروژه صنعتی نیاز به یک نفر آشنا به تهیه طرح کسب و کار (business plan) و آشنا به نرم افزار Comfar است. علاقمندان با من تماس بگیرند.
DataScienceLab
https://twitter.com/alfcnz/status/1306789982816940033?s=19
دورهی deep learning دانشگاه NYU که توسط Yann LeCun و Alfredo Canziani ارائه شد و به 11 زبان دنیا از جمله فارسی موجوده:
انگلیسی:
https://atcold.github.io/pytorch-Deep-Learning/
فارسی:
https://atcold.github.io/pytorch-Deep-Learning/fa/
✳️تشکر ویژه از تمام کسانی که در ترجمه فارسی کمک کردند
انگلیسی:
https://atcold.github.io/pytorch-Deep-Learning/
فارسی:
https://atcold.github.io/pytorch-Deep-Learning/fa/
✳️تشکر ویژه از تمام کسانی که در ترجمه فارسی کمک کردند
●ثبت نام در اولین دوره مبانی علوم کامپیوتر دانشگاه هاروارد شروع شد!
• برای ثبت نام و اطلاعات بیشتر به وبسایت CS50x.ir مراجعه کنید.
کد تخفیف: idslab
@CS50xIran
• برای ثبت نام و اطلاعات بیشتر به وبسایت CS50x.ir مراجعه کنید.
کد تخفیف: idslab
@CS50xIran
Machine Learning Basics | What is Artificial Intelligence? | Introduction To Machine Learning | https://youtu.be/AWQjAQI6k3Y
YouTube
Machine Learning Basics | What is Artificial Intelligence? | Introduction To Machine Learning |
What is Machine Learning? What is Artificial Intelligence? Where has Deep learning come from? In this video, we are going to take a quick look at the field of AI. and declare some definitions like speech recognition, computer vision, and NLP.
==========…
==========…
🎫رویداد آنلاین و رایگان "استخدام شدن به عنوان کارشناس یادگیری ماشین"
📌در این رویداد به سوالات زیر پاسخ داده خواهد شد:
- ساختار شرایط فعلی موقعیتهای شغلی هوش مصنوعی چیست؟
- استخدامکنندگان در هنگام بررسی رزومه به دنبال چه چیزی میگردند؟
- چگونه بهتر برای مصاحبه AI/ML آماده شویم؟
🎴با حضور کیان کتانفروش، استاد دانشگاه استنفورد و موسس وُرکرا
📅پنجشنبه 24 مهر
⏱ساعت 20:30 به وقت تهران
پیشنهاد میکنیم با حضور در این دوره، مسیر شغلی هوشمصنوعی رو از نزدیک ببینید.
🔗لینک ثبت نام در رویداد:
ثبت نام در رویداد
📌در این رویداد به سوالات زیر پاسخ داده خواهد شد:
- ساختار شرایط فعلی موقعیتهای شغلی هوش مصنوعی چیست؟
- استخدامکنندگان در هنگام بررسی رزومه به دنبال چه چیزی میگردند؟
- چگونه بهتر برای مصاحبه AI/ML آماده شویم؟
🎴با حضور کیان کتانفروش، استاد دانشگاه استنفورد و موسس وُرکرا
📅پنجشنبه 24 مهر
⏱ساعت 20:30 به وقت تهران
پیشنهاد میکنیم با حضور در این دوره، مسیر شغلی هوشمصنوعی رو از نزدیک ببینید.
🔗لینک ثبت نام در رویداد:
ثبت نام در رویداد
Eventbrite
Landing an ML Job
An online event hosted by DeepLearning.AI and Workera featuring a panel of technical recruiters to share secrets on how to land an ML job.
DataScienceLab
🎫رویداد آنلاین و رایگان "استخدام شدن به عنوان کارشناس یادگیری ماشین" 📌در این رویداد به سوالات زیر پاسخ داده خواهد شد: - ساختار شرایط فعلی موقعیتهای شغلی هوش مصنوعی چیست؟ - استخدامکنندگان در هنگام بررسی رزومه به دنبال چه چیزی میگردند؟ - چگونه بهتر برای…
YouTube
Landing an ML Job- secrets from technical recruiters
Welcome to Landing an ML Job- a virtual Learner Community Event hosted by DeepLearning.AI and Workera! A panel of technical recruiters will be sharing suggestions on potential career paths as well as tips and best practices for interview prep.
Agenda: PDT…
Agenda: PDT…
Forwarded from فیلاگر|جامعه هوش مصنوعی ایران
🎟️اطلاعات کامل درباره رویداد «خوانش گروهی با فیلاگر»
زمان برگزاری جلسه اول:
📆شنبه ۳ آبان ماه ۹۹
🕐ساعت ۲۰:۰۰
☯️برای حضور در برنامه نیاز به نصب اپلیکیشن zoom دارید.
🎴اگر هنوز کتاب رو دانلود نکردید، میتونید از این لینک در وبسایت فیلاگر، کتاب رو دریافت کنید:
🔗https://bit.ly/349eIx2
🧠فیلاگر|جامعه هوشمصنوعی ایران
@filoger_com
زمان برگزاری جلسه اول:
📆شنبه ۳ آبان ماه ۹۹
🕐ساعت ۲۰:۰۰
☯️برای حضور در برنامه نیاز به نصب اپلیکیشن zoom دارید.
🎴اگر هنوز کتاب رو دانلود نکردید، میتونید از این لینک در وبسایت فیلاگر، کتاب رو دریافت کنید:
🔗https://bit.ly/349eIx2
🧠فیلاگر|جامعه هوشمصنوعی ایران
@filoger_com