سیزدهمین سمینار بین المللی معادلات دیفرانسیل، سیستم های دینامیکی و کاربردها
تمدید مهلت ارسال مقالات: به اطلاع شرکت کنندگان محترمی که قصد ارسال مقاله دارند، رسانده می شود، مهلت ارسال مقاله تا پایان روز جمعه 7 خرداد تمدید شد.
Web: deds13.iut.ac.ir
💢💢💢💢💢💢💢
📡 @infinitymath
تمدید مهلت ارسال مقالات: به اطلاع شرکت کنندگان محترمی که قصد ارسال مقاله دارند، رسانده می شود، مهلت ارسال مقاله تا پایان روز جمعه 7 خرداد تمدید شد.
Web: deds13.iut.ac.ir
💢💢💢💢💢💢💢
📡 @infinitymath
@infinitymath
💢💢💢💢💢💢💢
Unsolved Problems
There are many unsolved problems in mathematics. Some prominent outstanding unsolved problems (as well as some which are not necessarily so well known) include
1. The Goldbach conjecture.
2. The Riemann hypothesis.
3. The conjecture that there exists a Hadamard matrix for every positive multiple of 4.
4. The twin prime conjecture (i.e., the conjecture that there are an infinite number of twin primes).
5. Determination of whether NP-problems are actually P-problems.
6. The Collatz problem.
7. Proof that the 196-algorithm does not terminate when applied to the number 196.
8. Proof that 10 is a solitary number.
9. Finding a formula for the probability that two elements chosen at random generate the symmetric group .
10. Solving the happy end problem for arbitrary .
11. Finding an Euler brick whose space diagonal is also an integer.
12. Proving which numbers can be represented as a sum of three or four (positive or negative) cubic numbers.
13. Lehmer's Mahler measure problem and Lehmer's totient problem on the existence of composite numbers such that , where is the totient function.
14. Determining if the Euler-Mascheroni constant is irrational.
15. Deriving an analytic form for the square site percolation threshold.
16. Determining if any odd perfect numbers exist.
The Clay Mathematics Institute (http://www.claymath.org/millennium/) of Cambridge, Massachusetts (CMI) has named seven "Millennium Prize Problems," selected by focusing on important classic questions in mathematics that have resisted solution over the years. A $7 million prize fund has been established for the solution to these problems, with $1 million allocated to each. The problems consist of the Riemann hypothesis, Poincaré conjecture, Hodge conjecture, Swinnerton-Dyer Conjecture, solution of the Navier-Stokes equations, formulation of Yang-Mills theory, and determination of whether NP-problems are actually P-problems.
In 1900, David Hilbert proposed a list of 23 outstanding problems in mathematics (Hilbert's problems), a number of which have now been solved, but some of which remain open. In 1912, Landau proposed four simply stated problems, now known as Landau's problems, which continue to defy attack even today. One hundred years after Hilbert, Smale (2000) proposed a list of 18 outstanding problems.
K. S. Brown, D. Eppstein, S. Finch, and C. Kimberling maintain webpages of unsolved problems in mathematics. Classic texts on unsolved problems in various areas of mathematics are Croft et al. (1991), in geometry, and Guy (2004), in number theory.
SEE ALSO:
Beal's Conjecture, Catalan's Conjecture, Fermat's Last Theorem, Hilbert's Problems, Kepler Conjecture, Landau's Problems, Mathematics Contests, Mathematics Prizes, Poincaré Conjecture, Problem, Solved Problems, Szemerédi's Theorem, Twin Primes
منبع: دکتر نجفی خواه
@MehdiNadjafikhah
💢💢💢💢💢💢
@infinitymath
💢💢💢💢💢💢💢
Unsolved Problems
There are many unsolved problems in mathematics. Some prominent outstanding unsolved problems (as well as some which are not necessarily so well known) include
1. The Goldbach conjecture.
2. The Riemann hypothesis.
3. The conjecture that there exists a Hadamard matrix for every positive multiple of 4.
4. The twin prime conjecture (i.e., the conjecture that there are an infinite number of twin primes).
5. Determination of whether NP-problems are actually P-problems.
6. The Collatz problem.
7. Proof that the 196-algorithm does not terminate when applied to the number 196.
8. Proof that 10 is a solitary number.
9. Finding a formula for the probability that two elements chosen at random generate the symmetric group .
10. Solving the happy end problem for arbitrary .
11. Finding an Euler brick whose space diagonal is also an integer.
12. Proving which numbers can be represented as a sum of three or four (positive or negative) cubic numbers.
13. Lehmer's Mahler measure problem and Lehmer's totient problem on the existence of composite numbers such that , where is the totient function.
14. Determining if the Euler-Mascheroni constant is irrational.
15. Deriving an analytic form for the square site percolation threshold.
16. Determining if any odd perfect numbers exist.
The Clay Mathematics Institute (http://www.claymath.org/millennium/) of Cambridge, Massachusetts (CMI) has named seven "Millennium Prize Problems," selected by focusing on important classic questions in mathematics that have resisted solution over the years. A $7 million prize fund has been established for the solution to these problems, with $1 million allocated to each. The problems consist of the Riemann hypothesis, Poincaré conjecture, Hodge conjecture, Swinnerton-Dyer Conjecture, solution of the Navier-Stokes equations, formulation of Yang-Mills theory, and determination of whether NP-problems are actually P-problems.
In 1900, David Hilbert proposed a list of 23 outstanding problems in mathematics (Hilbert's problems), a number of which have now been solved, but some of which remain open. In 1912, Landau proposed four simply stated problems, now known as Landau's problems, which continue to defy attack even today. One hundred years after Hilbert, Smale (2000) proposed a list of 18 outstanding problems.
K. S. Brown, D. Eppstein, S. Finch, and C. Kimberling maintain webpages of unsolved problems in mathematics. Classic texts on unsolved problems in various areas of mathematics are Croft et al. (1991), in geometry, and Guy (2004), in number theory.
SEE ALSO:
Beal's Conjecture, Catalan's Conjecture, Fermat's Last Theorem, Hilbert's Problems, Kepler Conjecture, Landau's Problems, Mathematics Contests, Mathematics Prizes, Poincaré Conjecture, Problem, Solved Problems, Szemerédi's Theorem, Twin Primes
منبع: دکتر نجفی خواه
@MehdiNadjafikhah
💢💢💢💢💢💢
@infinitymath
منوچهر وصال شیرازی (زادهٔ ۷ بهمن ۱۲۹۱ در تهران – درگذشتهٔ ۲۴ مرداد ۱۳۹۱ در تهران) چهرهٔ ماندگار رشتهٔ ریاضی ایران در سال ۱۳۸۳ و پدر آنالیز ایران بود.
💢💢💢💢💢💢
📡 @infinitymath
💢💢💢💢💢💢
📡 @infinitymath
پرویز شهریاری (زاد ۲ آذر ۱۳۰۵ در کرمان — درگذشته ۲۲ اردیبهشت ۱۳۹۱ در تهران)ریاضیدان، مترجم، نویسنده، روزنامهنگار، فعال سیاسی و از چهرههای ماندگار ریاضی.
💢💢💢💢💢💢
@infinitymath
💢💢💢💢💢💢
@infinitymath
پروفسور مهدی رجبعلیپور (زاده ۱۳۲۴ کرمان) استاد دانشگاه کرمان و عضو فرهنگستان علوم و چهره ماندگار ریاضی در نخستین همایش آن در سال ۱۳۸۰. زمینه فعالیت: جبرخطی و نظریه عملگرها
💢💢💢💢💢
@infinitymath
💢💢💢💢💢
@infinitymath
پروفسور سیاوش شَهْشَهانی (متولّد ۱۳۲۱ تهران) استاددانشگاه شریف، چهره ماندگار ریاضی سال 82، زمینهٔ فعالیت: سیستمهای دینامیکی. با تلاش های او اولین ارتباط اینترنتی در کشور فراهم شد.
@infinitymath
@infinitymath
پروفسور امیدعلی شهنی کرمزاده ( ۱۳۲۳ مسجدسلیمان ), استاد دانشگاه چمران اهواز، چهره ماندگار ریاضی سال 84 . برنده جایزه ترویج علم ایران.
@infinitymath
@infinitymath
علیرضا مدقالچی (زادهٔ ۱۳۳۰ در اهر) ریاضیدان، مترجم، نویسنده و استاد دانشگاه خوارزمی است. وی در سال ۱۳۸۹ به عنوان چهرهٔ ماندگار رشتهٔ ریاضیات معرفی شد.
@infinitymath
@infinitymath
پروفسور سید عبادالله محمودیان ( ۱۳۲۲ زنجان)، استاد دانشگاه صنعتی شریف، چهره ماندگار ریاضی سال89، زمینه تحقیقاتی: رنگ آمیزی گرافها، طرحهای ترکیبیاتی، برنده جایزه ملی علامه طباطبائی.
@infinitymath
@infinitymath
پروفسور بهمن مهری ( 1314 رشت ) استاددانشگاه صنعتی شریف و تحصیلات تکمیلی زنجان، چهره ماندگار ریاضی سال 81. زمینهٔ تحقیقات: معادلات دیفرانسیل
@infinitymath
@infinitymath
Forwarded from دستیار زیر نویس و هایپر لینک
This media is not supported in your browser
VIEW IN TELEGRAM
مکعب جاودیی
@infinitymath
@infinitymath
Forwarded from Deleted Account
کاشیکاری دایره به روش موریس اشر با الهام از هندسه هذلولوی
نام اثر:
Circle limit
📡 @infinitymath
📡 @infinitymath
نام اثر:
Circle limit
📡 @infinitymath
📡 @infinitymath
Forwarded from دستیار زیر نویس و هایپر لینک
The Ulam sequence is a sequence of positive integers a_n, where a_1=1, a_2=2, and where each a_n for n > 2 is defined to be the smallest integer that can be expressed as the sum of two distinct earlier terms in a unique way.
The first few terms of the sequence are shown in the picture: 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47. The third term is 3, because 3=1+2. The fourth term is 4, because although 4 can be expressed in two ways as the sum of two earlier terms (1+3, or 2+2) the sum “2+2” is not a sum of distinct earlier terms. The fifth term is not 5, because 5=1+4=2+3; rather, it is 6, which is 2+4. The sixth term is not 7, because 7=1+6=3+4, but rather 8, which is 2+6. And so on.
The Ulam sequence is named after the Polish-American mathematician Stanisław Ulam (1909–1984) who introduced it in 1964 in a survey on unsolved problems. Ulam remarked that it can be notoriously difficult to answer questions about the properties of sequences like this one, even if they are defined by a simple rule.
@infinitymath
The first few terms of the sequence are shown in the picture: 1, 2, 3, 4, 6, 8, 11, 13, 16, 18, 26, 28, 36, 38, 47. The third term is 3, because 3=1+2. The fourth term is 4, because although 4 can be expressed in two ways as the sum of two earlier terms (1+3, or 2+2) the sum “2+2” is not a sum of distinct earlier terms. The fifth term is not 5, because 5=1+4=2+3; rather, it is 6, which is 2+4. The sixth term is not 7, because 7=1+6=3+4, but rather 8, which is 2+6. And so on.
The Ulam sequence is named after the Polish-American mathematician Stanisław Ulam (1909–1984) who introduced it in 1964 in a survey on unsolved problems. Ulam remarked that it can be notoriously difficult to answer questions about the properties of sequences like this one, even if they are defined by a simple rule.
@infinitymath