Что выведет на экран следующий код?
Anonymous Quiz
55%
TT.methodA 1
15%
TT.methodA 2
10%
TT.methodA 0
7%
Ошибка выполнения
14%
Ошибка компиляции
👍24❤4
Что такое Type Erasure?
Компилятор удаляет из байткода класс-файла информацию о типах-дженериках. Этот процесс и называется стирание типов (type erasure). Он появился в Java 5 вместе с самими дженериками. Такое решение позволило сохранить обратную совместимость без перекомпилляции кода Java 4.
Стирание состоит из трех действий:
🔘 Если параметры ограничены (bounded), вместо типа-параметра в местах использования подставляется верхняя граница, иначе Object;
🔘 В местах присвоения значения типа-параметра в переменную обычного типа добавляется каст к этому типу;
🔘 Генерируются bridge-методы.
Информация о типах стирается только из методов и полей, но остается в метаинформации самого класса. Получить эту информацию в рантайме можно с помощью рефлекшна, методом Field#getGenericType.
Тип со стертой информацией о дженериках называется «Non-reifiable».
Стирание типов позволяет не создавать при применении дженериков новые классы, в отличие от, например, шаблонов C++.
Компилятор удаляет из байткода класс-файла информацию о типах-дженериках. Этот процесс и называется стирание типов (type erasure). Он появился в Java 5 вместе с самими дженериками. Такое решение позволило сохранить обратную совместимость без перекомпилляции кода Java 4.
Стирание состоит из трех действий:
🔘 Если параметры ограничены (bounded), вместо типа-параметра в местах использования подставляется верхняя граница, иначе Object;
🔘 В местах присвоения значения типа-параметра в переменную обычного типа добавляется каст к этому типу;
🔘 Генерируются bridge-методы.
Информация о типах стирается только из методов и полей, но остается в метаинформации самого класса. Получить эту информацию в рантайме можно с помощью рефлекшна, методом Field#getGenericType.
Тип со стертой информацией о дженериках называется «Non-reifiable».
Стирание типов позволяет не создавать при применении дженериков новые классы, в отличие от, например, шаблонов C++.
👍28❤1❤🔥1
Что напечатает следующий код?
Anonymous Quiz
38%
Код не скомпилируется
2%
Код скомпилируется, но ничего не напечатает
50%
Код скомпилируется и напечатает 3
5%
Код скомпилируется, но во время выполнения возникнет исключение
4%
Ничего из вышеперечисленного
👍25🍾2🌚1
Как ограничивается тип generic параметра?
В объявлении дженерик-параметра класса или метода может быть указана его верхняя граница (bound)
Помимо ограничения возможных применяемых типов, bounded-параметр дает право использовать в реализации методы и поля типа-ограничителя – он будет как минимум предком фактического типа. Это достигается стиранием типа-параметра до верхней границы.
Тип-параметр может иметь несколько верхних границ, то есть границу-пересечение типов: <T extends Comparable & Serializable>. Стирание произойдет до первой из границ, остальные послужат только ограничением вариантов фактического типа. Поэтому граница-класс, при наличии, должна быть указана раньше границ-интерфейсов.
При указании значения дженерик-параметра переменной может быть использован вайлдкард – символ ?. Вайлдкард значит, что мы не собираемся использовать информацию о конкретном типе, этот тип может быть любым. Это не то же самое, что не указать дженерик параметр совсем.
Для вайлдкарда также как и для объявления типа-параметра можно обозначить верхнюю границу. Но в отличие от объявления здесь нельзя использовать пересечение типов, по крайней мере пока.
Кроме того в случае вайлдкарда можно задать нижнюю границу
В объявлении класса или метода использование super запрещено, так как не имеет смысла.
Разобраться в использования ограниченных вайлдкардов поможет это видео.
Хороший API должен уметь эффективно работать с классами-наследниками, то есть быть ко- или контравариантным где это необходимо. При этом без bounded вайлдкардов не обойтись. Чтобы запомнить, какая граница нужна в каких случаях, Joshua Bloch предложил мнемонику PECS: Producer-extends, Consumer-super
В объявлении дженерик-параметра класса или метода может быть указана его верхняя граница (bound)
class Foo<T extends Number>Ключевое слово extends применяется как для классов, так и для интерфейсов. Фактическим параметром такого класса Foo может быть или сам Number, или его наследники.
Помимо ограничения возможных применяемых типов, bounded-параметр дает право использовать в реализации методы и поля типа-ограничителя – он будет как минимум предком фактического типа. Это достигается стиранием типа-параметра до верхней границы.
Тип-параметр может иметь несколько верхних границ, то есть границу-пересечение типов: <T extends Comparable & Serializable>. Стирание произойдет до первой из границ, остальные послужат только ограничением вариантов фактического типа. Поэтому граница-класс, при наличии, должна быть указана раньше границ-интерфейсов.
При указании значения дженерик-параметра переменной может быть использован вайлдкард – символ ?. Вайлдкард значит, что мы не собираемся использовать информацию о конкретном типе, этот тип может быть любым. Это не то же самое, что не указать дженерик параметр совсем.
Для вайлдкарда также как и для объявления типа-параметра можно обозначить верхнюю границу. Но в отличие от объявления здесь нельзя использовать пересечение типов, по крайней мере пока.
Кроме того в случае вайлдкарда можно задать нижнюю границу
Foo<? super Number> foo;Означает, что мы не будем использовать информацию о конкретном типе, но будем знать что это предок класса Number. То есть или сам Number, или Object.
В объявлении класса или метода использование super запрещено, так как не имеет смысла.
Разобраться в использования ограниченных вайлдкардов поможет это видео.
Хороший API должен уметь эффективно работать с классами-наследниками, то есть быть ко- или контравариантным где это необходимо. При этом без bounded вайлдкардов не обойтись. Чтобы запомнить, какая граница нужна в каких случаях, Joshua Bloch предложил мнемонику PECS: Producer-extends, Consumer-super
👍16❤1
Что произойдет при выполнении такого кода?
Anonymous Quiz
32%
Ошибка компиляции в 4-й строке
19%
Ошибка компиляции в 5-й строке
9%
Ошибка компиляции в 6-й строке
10%
Ошибка компиляции в 7-й строке
23%
Будет выведено на консоль: [1.5][1.5]
6%
Ошибка выполнения
👍19🤔6❤3🥱1
Что такое ковариантность и контравариантность?
Формально, ковариантность/контравариантность типов – это сохранение/обращение порядка наследования для производных типов. Проще говоря, когда у ковариантных сущностей типами-параметрами являются родитель и наследник, они сами становятся как бы родителем и наследником. Контравариантные наоборот, становятся наследником и родителем.
Легче всего осознать эти понятия на примерах:
🔘 Ковариантность: List<Integer> можно присвоить в переменную типа List<? extends Number> (как будто он наследник List<Number>).
🔘 Контравариантность: в качестве параметра метода List<Number>#sort типа Comparator<? super Number> может быть передан Comparator<Object> (как будто он родитель Comparator<Number>)
Отношение типов «можно присвоить» – не совсем наследование, такие типы называются совместимыми (отношение «is a»).
Существует еще одно связанное понятие – инвариантность. Инвариантность – это отсутствие свойств ковариантности и контрвариантности. Дженерики без вайлдкардов инвариантны: List<Number> нельзя положить ни в переменную типа List<Double>, ни в List<Object>.
Массивы ковариантны: в переменную Object[] можно присвоить значение типа String[].
Переопределение методов начиная с Java 5 ковариантно относительно типа результата и типов исключений.
Формально, ковариантность/контравариантность типов – это сохранение/обращение порядка наследования для производных типов. Проще говоря, когда у ковариантных сущностей типами-параметрами являются родитель и наследник, они сами становятся как бы родителем и наследником. Контравариантные наоборот, становятся наследником и родителем.
Легче всего осознать эти понятия на примерах:
🔘 Ковариантность: List<Integer> можно присвоить в переменную типа List<? extends Number> (как будто он наследник List<Number>).
🔘 Контравариантность: в качестве параметра метода List<Number>#sort типа Comparator<? super Number> может быть передан Comparator<Object> (как будто он родитель Comparator<Number>)
Отношение типов «можно присвоить» – не совсем наследование, такие типы называются совместимыми (отношение «is a»).
Существует еще одно связанное понятие – инвариантность. Инвариантность – это отсутствие свойств ковариантности и контрвариантности. Дженерики без вайлдкардов инвариантны: List<Number> нельзя положить ни в переменную типа List<Double>, ни в List<Object>.
Массивы ковариантны: в переменную Object[] можно присвоить значение типа String[].
Переопределение методов начиная с Java 5 ковариантно относительно типа результата и типов исключений.
👍20🔥1
Какой будет результат?
Anonymous Quiz
13%
howl woof sniff
7%
howl howl затем ошибка
17%
howl howl sniff
12%
howl woof затем ошибка
14%
Ошибка компиляции в строке 12
37%
Ошибка компиляции в строке 13
👍20🍾4
Что такое bridge method?
В Java отсутствует ковариантность переопределенных методов по параметрам – их типы должны совпадать с типами параметров метода в родительском классе. Когда дженерик параметр конкретизируется в наследнике, методы с аргументами этого дженерик типа больше не совпадают в байткоде – в наследнике тип конкретный, а в родителе стертый до верхней границы.
Проблема решается простым и безопасным кастом. Компилятор генерирует новый метод, который совпадает по сигнатуре с родительским. В его теле параметр кастуется и вызов делегируется в пользовательский метод. Это и называется bridge методом.
Bridge method можно увидеть с помощью рефлекшна. Его имя совпадает с оригинальным методом, но параметр имеет тип, в который сотрется дженерик родителя. Этот метод будет помечен флагом synthetic, что значит, что он написан не программистом а компилятором.
Попытка написать такой же метод вручную приведет к ошибке компиляции.
В Java отсутствует ковариантность переопределенных методов по параметрам – их типы должны совпадать с типами параметров метода в родительском классе. Когда дженерик параметр конкретизируется в наследнике, методы с аргументами этого дженерик типа больше не совпадают в байткоде – в наследнике тип конкретный, а в родителе стертый до верхней границы.
Проблема решается простым и безопасным кастом. Компилятор генерирует новый метод, который совпадает по сигнатуре с родительским. В его теле параметр кастуется и вызов делегируется в пользовательский метод. Это и называется bridge методом.
Bridge method можно увидеть с помощью рефлекшна. Его имя совпадает с оригинальным методом, но параметр имеет тип, в который сотрется дженерик родителя. Этот метод будет помечен флагом synthetic, что значит, что он написан не программистом а компилятором.
Попытка написать такой же метод вручную приведет к ошибке компиляции.
👍16🔥4❤1
Каким будет результат выполнения следующего кода?
Anonymous Quiz
36%
0
44%
-1
4%
Ничего из перечисленного
15%
Ошибка компиляции
👍37
Каким будет результат выполнения следующего кода?
Anonymous Quiz
17%
Value 1
56%
Value 3
6%
Value 2
20%
Ошибка компиляции
👍19🏆3
Каким будет результат выполнения следующего кода?
Anonymous Quiz
15%
Ошибка во время компиляции
39%
Выброс исключения IllegallAccessException во время исполнения
46%
Вывод в консоль "Hello World"
👍17🤨4🍾3
Каким будет результат выполнения следующего кода?
Anonymous Quiz
47%
Вывод в консоль - 1
7%
Ошибка во время исполнения
10%
Ошибка во время компиляции
36%
Вывод в консоль - 2
👍16❤1🌚1
Что такое heap pollution?
Как было сказано ранее, массивы в Java ковариантны. А значит, можно обратиться к объекту типа String[] через переменную типа Object[], и положить туда например Integer. Такой код скомпилируется, но в момент записи произойдет ArrayStoreException.
Дженерики защищены инвариантностью. Если попытаться положить List<Object> в List<String>, эта же по сути ошибка произойдет уже на этапе компиляции.
Heap pollution – ситуация, когда эта защита не срабатывает, и переменная параметризованного типа хранит в себе объект, параметризованный другим типом. Простейший пример:
Heap pollution может произойти в двух случаях: при использовании массивов дженериков и при смешивании параметризованных и raw-типов.
Raw types – это параметризованные типы без указания параметра. Пример с raw types, приводящий к heap pollution, уже был описан выше:
Компилятор не даст создать массив параметризованного типа, это приведет к ошибке generic array creation. Картинка выше иллюстрирует, к чему это могло бы привести.
Параметризованный тип varargs-аргумента метода вызывает ту же проблему, т.к. varargs – не что иное как параметр-массив. Вот почему он так же приводит к предупреждению компилятора «possible heap pollution». Если вы уверены что риска нет, с Java 7 это предупреждение заглушается аннотацией @SafeVarargs.
Как было сказано ранее, массивы в Java ковариантны. А значит, можно обратиться к объекту типа String[] через переменную типа Object[], и положить туда например Integer. Такой код скомпилируется, но в момент записи произойдет ArrayStoreException.
Дженерики защищены инвариантностью. Если попытаться положить List<Object> в List<String>, эта же по сути ошибка произойдет уже на этапе компиляции.
Heap pollution – ситуация, когда эта защита не срабатывает, и переменная параметризованного типа хранит в себе объект, параметризованный другим типом. Простейший пример:
List<String> strings = (List) new ArrayList<Integer>();Документация гарантирует, что при компиляции всего кода целиком, heap pollution не может возникнуть без варнинга этапа компиляции.
Heap pollution может произойти в двух случаях: при использовании массивов дженериков и при смешивании параметризованных и raw-типов.
Raw types – это параметризованные типы без указания параметра. Пример с raw types, приводящий к heap pollution, уже был описан выше:
List<String> strings = (List) new ArrayList<Integer>();Использовать raw types не надо вообще, причины подробно изложены в главе 26 Effective Java. Если информация о дженериках не нужна, используется символ wildcard (<?>).
Компилятор не даст создать массив параметризованного типа, это приведет к ошибке generic array creation. Картинка выше иллюстрирует, к чему это могло бы привести.
Параметризованный тип varargs-аргумента метода вызывает ту же проблему, т.к. varargs – не что иное как параметр-массив. Вот почему он так же приводит к предупреждению компилятора «possible heap pollution». Если вы уверены что риска нет, с Java 7 это предупреждение заглушается аннотацией @SafeVarargs.
👍24❤5🔥3