"Data Structures and Algorithms in Python"
In this book, which is over 300 pages long, all the main data structures and algorithms are excellently explained.
There are versions for both C++ and Java.
Here's a copy for Python
In this book, which is over 300 pages long, all the main data structures and algorithms are excellently explained.
There are versions for both C++ and Java.
Here's a copy for Python
❤4
Python Detailed Roadmap 🚀
📌 1. Basics
◼ Data Types & Variables
◼ Operators & Expressions
◼ Control Flow (if, loops)
📌 2. Functions & Modules
◼ Defining Functions
◼ Lambda Functions
◼ Importing & Creating Modules
📌 3. File Handling
◼ Reading & Writing Files
◼ Working with CSV & JSON
📌 4. Object-Oriented Programming (OOP)
◼ Classes & Objects
◼ Inheritance & Polymorphism
◼ Encapsulation
📌 5. Exception Handling
◼ Try-Except Blocks
◼ Custom Exceptions
📌 6. Advanced Python Concepts
◼ List & Dictionary Comprehensions
◼ Generators & Iterators
◼ Decorators
📌 7. Essential Libraries
◼ NumPy (Arrays & Computations)
◼ Pandas (Data Analysis)
◼ Matplotlib & Seaborn (Visualization)
📌 8. Web Development & APIs
◼ Web Scraping (BeautifulSoup, Scrapy)
◼ API Integration (Requests)
◼ Flask & Django (Backend Development)
📌 9. Automation & Scripting
◼ Automating Tasks with Python
◼ Working with Selenium & PyAutoGUI
📌 10. Data Science & Machine Learning
◼ Data Cleaning & Preprocessing
◼ Scikit-Learn (ML Algorithms)
◼ TensorFlow & PyTorch (Deep Learning)
📌 11. Projects
◼ Build Real-World Applications
◼ Showcase on GitHub
📌 12. ✅ Apply for Jobs
◼ Strengthen Resume & Portfolio
◼ Prepare for Technical Interviews
Like for more ❤️💪
📌 1. Basics
◼ Data Types & Variables
◼ Operators & Expressions
◼ Control Flow (if, loops)
📌 2. Functions & Modules
◼ Defining Functions
◼ Lambda Functions
◼ Importing & Creating Modules
📌 3. File Handling
◼ Reading & Writing Files
◼ Working with CSV & JSON
📌 4. Object-Oriented Programming (OOP)
◼ Classes & Objects
◼ Inheritance & Polymorphism
◼ Encapsulation
📌 5. Exception Handling
◼ Try-Except Blocks
◼ Custom Exceptions
📌 6. Advanced Python Concepts
◼ List & Dictionary Comprehensions
◼ Generators & Iterators
◼ Decorators
📌 7. Essential Libraries
◼ NumPy (Arrays & Computations)
◼ Pandas (Data Analysis)
◼ Matplotlib & Seaborn (Visualization)
📌 8. Web Development & APIs
◼ Web Scraping (BeautifulSoup, Scrapy)
◼ API Integration (Requests)
◼ Flask & Django (Backend Development)
📌 9. Automation & Scripting
◼ Automating Tasks with Python
◼ Working with Selenium & PyAutoGUI
📌 10. Data Science & Machine Learning
◼ Data Cleaning & Preprocessing
◼ Scikit-Learn (ML Algorithms)
◼ TensorFlow & PyTorch (Deep Learning)
📌 11. Projects
◼ Build Real-World Applications
◼ Showcase on GitHub
📌 12. ✅ Apply for Jobs
◼ Strengthen Resume & Portfolio
◼ Prepare for Technical Interviews
Like for more ❤️💪
❤6
Kandinsky 5.0 Video Lite and Kandinsky 5.0 Video Pro generative models on the global text-to-video landscape
🔘Pro is currently the #1 open-source model worldwide
🔘Lite (2B parameters) outperforms Sora v1.
🔘Only Google (Veo 3.1, Veo 3), OpenAI (Sora 2), Alibaba (Wan 2.5), and KlingAI (Kling 2.5, 2.6) outperform Pro — these are objectively the strongest video generation models in production today. We are on par with Luma AI (Ray 3) and MiniMax (Hailuo 2.3): the maximum ELO gap is 3 points, with a 95% CI of ±21.
Useful links
🔘Full leaderboard: LM Arena
🔘Kandinsky 5.0 details: technical report
🔘Open-source Kandinsky 5.0: GitHub and Hugging Face
🔘Pro is currently the #1 open-source model worldwide
🔘Lite (2B parameters) outperforms Sora v1.
🔘Only Google (Veo 3.1, Veo 3), OpenAI (Sora 2), Alibaba (Wan 2.5), and KlingAI (Kling 2.5, 2.6) outperform Pro — these are objectively the strongest video generation models in production today. We are on par with Luma AI (Ray 3) and MiniMax (Hailuo 2.3): the maximum ELO gap is 3 points, with a 95% CI of ±21.
Useful links
🔘Full leaderboard: LM Arena
🔘Kandinsky 5.0 details: technical report
🔘Open-source Kandinsky 5.0: GitHub and Hugging Face
❤2👍2
PAID vs FREE AI TOOLS IN 2026
📱 Research
1. Paid: ChatGPT.com
2. Free: Scispace.com
🖼 Image Generation
1. Paid: Ideogram.ai
2. Free: Mage.Space
💧 Watermark Remover
1. Paid: Fotor.com
2. Free: Cleanup.pictures
📈 Presentation Maker
1. Paid: Beautiful.ai
2. Free: SlidesAI.io
🎞 Video Generator
1. Paid: Synthesia.io
2. Free: Veed.io
📝 Writing
1. Paid: Quillbot.com
2. Free: Scribbr.com
👩🎨 Design
1. Paid: Canva.com
2. Free: Designer.microsoft.com
📱 Research
1. Paid: ChatGPT.com
2. Free: Scispace.com
🖼 Image Generation
1. Paid: Ideogram.ai
2. Free: Mage.Space
💧 Watermark Remover
1. Paid: Fotor.com
2. Free: Cleanup.pictures
📈 Presentation Maker
1. Paid: Beautiful.ai
2. Free: SlidesAI.io
🎞 Video Generator
1. Paid: Synthesia.io
2. Free: Veed.io
📝 Writing
1. Paid: Quillbot.com
2. Free: Scribbr.com
👩🎨 Design
1. Paid: Canva.com
2. Free: Designer.microsoft.com
❤13
Coding is tricky. Coding in interviews feels even harder. It’s intimidating, uncertain and hard to prepare. Here are 4 ways to do it!
1. Interview Cake: I think it is some of the best prep available and it is targeted toward weaknesses many data scientists have in algorithms and data structures: https://www.interviewcake.com/
2. Leetcode: While developed for software engineering interviews, it has a LOT of useful content for learning algorithms. For data science, I'd suggest focusing on Easy/Medium: https://leetcode.com/
3. Cracking the Coding Interview: Amazing book, sometimes referred to as CTCI. A classic and one you should have: https://cin.ufpe.br/~fbma/Crack/Cracking%20the%20Coding%20Interview%20189%20Programming%20Questions%20and%20Solutions.pdf
4. Daily Coding Problem: The book and the website are awesome. Work on a daily problem. This was my go to resource for when I was looking to stay sharp: https://www.dailycodingproblem.com/
1. Interview Cake: I think it is some of the best prep available and it is targeted toward weaknesses many data scientists have in algorithms and data structures: https://www.interviewcake.com/
2. Leetcode: While developed for software engineering interviews, it has a LOT of useful content for learning algorithms. For data science, I'd suggest focusing on Easy/Medium: https://leetcode.com/
3. Cracking the Coding Interview: Amazing book, sometimes referred to as CTCI. A classic and one you should have: https://cin.ufpe.br/~fbma/Crack/Cracking%20the%20Coding%20Interview%20189%20Programming%20Questions%20and%20Solutions.pdf
4. Daily Coding Problem: The book and the website are awesome. Work on a daily problem. This was my go to resource for when I was looking to stay sharp: https://www.dailycodingproblem.com/
❤2