🌻 𝗨𝗻𝗱𝗲𝗿𝘀𝘁𝗮𝗻𝗱 𝗕𝗶𝗴 𝗢 𝗻𝗼𝘁𝗮𝘁𝗶𝗼𝗻!
O(1) - Constant Time: Simple tasks that take the same amount of time no matter how much data you have, like finding an item in a list by its position.
O(log n) - Logarithmic Time: Tasks that take less time as the data grows, like finding an item in a sorted list by repeatedly dividing it in half.
O(n) - Linear Time: Tasks that take more time as the data grows, like counting all items in a list by checking each one.
O(n log n) - Linearithmic Time: Tasks that get a bit slower as the data grows, like sorting a list using efficient methods such as merge sort or quick sort.
O(n²) - Quadratic Time: Tasks that get noticeably slower as the data grows, like sorting a list using simpler methods like bubble sort or finding all pairs in a list.
O(2^n) - Exponential Time: Tasks that get much slower as the data grows, like finding all subsets of a set or solving complex problems like the traveling salesman using a basic approach.
O(n!) - Factorial Time: Tasks that get extremely slow as the data grows, like solving problems that involve checking every possible arrangement of items.
O(1) - Constant Time: Simple tasks that take the same amount of time no matter how much data you have, like finding an item in a list by its position.
O(log n) - Logarithmic Time: Tasks that take less time as the data grows, like finding an item in a sorted list by repeatedly dividing it in half.
O(n) - Linear Time: Tasks that take more time as the data grows, like counting all items in a list by checking each one.
O(n log n) - Linearithmic Time: Tasks that get a bit slower as the data grows, like sorting a list using efficient methods such as merge sort or quick sort.
O(n²) - Quadratic Time: Tasks that get noticeably slower as the data grows, like sorting a list using simpler methods like bubble sort or finding all pairs in a list.
O(2^n) - Exponential Time: Tasks that get much slower as the data grows, like finding all subsets of a set or solving complex problems like the traveling salesman using a basic approach.
O(n!) - Factorial Time: Tasks that get extremely slow as the data grows, like solving problems that involve checking every possible arrangement of items.
👍4
hands-on-data-science.pdf
15.3 MB
Hands-On Data Science and Python Machine Learning
Frank Kane, 2017
Frank Kane, 2017
XML_JSON_Programming,_For_Beginners,_Learn_Coding.epub
876.1 KB
XML JSON Programming
Yao, Ray, 2020
Yao, Ray, 2020
System design terminologies.pdf
23.7 MB
𝗦𝘆𝘀𝘁𝗲𝗺 𝗗𝗲𝘀𝗶𝗴𝗻 𝗧𝗲𝗿𝗺𝗶𝗻𝗼𝗹𝗼𝗴𝗶𝗲𝘀
❤5
Android App Development For Dummies (Michael Burton).pdf
8.1 MB
Android App development for Dummies
Learn C Programming, 2nd Edition (Jef.).pdf
15 MB
Learn C programming
Jeff Szuhay, 2022
Jeff Szuhay, 2022
❤4👍2
Python Data Cleaning Cookbook.pdf
3.4 MB
Python Data Cleaning Cookbook
Michael Walker, 2023
Michael Walker, 2023
❤4👍2