How to do confidence as a Data Analyst
You’re unqualified because you haven’t applied your learning
2025 OUTs:
• less tutorials
• less boot camps
• less certification
2025 INs:
• Build SQL projects
• Build Excel reports
• Build PowerBi dashboards
Apply your learning by building to gain confidence.
#dataanalytics
You’re unqualified because you haven’t applied your learning
2025 OUTs:
• less tutorials
• less boot camps
• less certification
2025 INs:
• Build SQL projects
• Build Excel reports
• Build PowerBi dashboards
Apply your learning by building to gain confidence.
#dataanalytics
👍16❤2
Complete roadmap to learn Python for data analysis
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Denoscriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
👨💻 FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://news.1rj.ru/str/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://news.1rj.ru/str/pythonfreebootcamp/134
7. https://news.1rj.ru/str/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://news.1rj.ru/str/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://news.1rj.ru/str/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING 👍👍
Step 1: Fundamentals of Python
1. Basics of Python Programming
- Introduction to Python
- Data types (integers, floats, strings, booleans)
- Variables and constants
- Basic operators (arithmetic, comparison, logical)
2. Control Structures
- Conditional statements (if, elif, else)
- Loops (for, while)
- List comprehensions
3. Functions and Modules
- Defining functions
- Function arguments and return values
- Importing modules
- Built-in functions vs. user-defined functions
4. Data Structures
- Lists, tuples, sets, dictionaries
- Manipulating data structures (add, remove, update elements)
Step 2: Advanced Python
1. File Handling
- Reading from and writing to files
- Working with different file formats (txt, csv, json)
2. Error Handling
- Try, except blocks
- Handling exceptions and errors gracefully
3. Object-Oriented Programming (OOP)
- Classes and objects
- Inheritance and polymorphism
- Encapsulation
Step 3: Libraries for Data Analysis
1. NumPy
- Understanding arrays and array operations
- Indexing, slicing, and iterating
- Mathematical functions and statistical operations
2. Pandas
- Series and DataFrames
- Reading and writing data (csv, excel, sql, json)
- Data cleaning and preparation
- Merging, joining, and concatenating data
- Grouping and aggregating data
3. Matplotlib and Seaborn
- Data visualization with Matplotlib
- Plotting different types of graphs (line, bar, scatter, histogram)
- Customizing plots
- Advanced visualizations with Seaborn
Step 4: Data Manipulation and Analysis
1. Data Wrangling
- Handling missing values
- Data transformation
- Feature engineering
2. Exploratory Data Analysis (EDA)
- Denoscriptive statistics
- Data visualization techniques
- Identifying patterns and outliers
3. Statistical Analysis
- Hypothesis testing
- Correlation and regression analysis
- Probability distributions
Step 5: Advanced Topics
1. Time Series Analysis
- Working with datetime objects
- Time series decomposition
- Forecasting models
2. Machine Learning Basics
- Introduction to machine learning
- Supervised vs. unsupervised learning
- Using Scikit-Learn for machine learning
- Building and evaluating models
3. Big Data and Cloud Computing
- Introduction to big data frameworks (e.g., Hadoop, Spark)
- Using cloud services for data analysis (e.g., AWS, Google Cloud)
Step 6: Practical Projects
1. Hands-on Projects
- Analyzing datasets from Kaggle
- Building interactive dashboards with Plotly or Dash
- Developing end-to-end data analysis projects
2. Collaborative Projects
- Participating in data science competitions
- Contributing to open-source projects
👨💻 FREE Resources to Learn & Practice Python
1. https://www.freecodecamp.org/learn/data-analysis-with-python/#data-analysis-with-python-course
2. https://www.hackerrank.com/domains/python
3. https://www.hackerearth.com/practice/python/getting-started/numbers/practice-problems/
4. https://news.1rj.ru/str/PythonInterviews
5. https://www.w3schools.com/python/python_exercises.asp
6. https://news.1rj.ru/str/pythonfreebootcamp/134
7. https://news.1rj.ru/str/pythonanalyst
8. https://pythonbasics.org/exercises/
9. https://news.1rj.ru/str/pythondevelopersindia/300
10. https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
11. https://news.1rj.ru/str/pythonspecialist/33
Join @free4unow_backup for more free resources
ENJOY LEARNING 👍👍
👍6❤1
Python Pandas Beginner's Guide
👍4
Useful websites to practice and enhance your Data Analytics skills
👇👇
1. SQL
https://mode.com/sql-tutorial/introduction-to-sql
https://news.1rj.ru/str/sqlspecialist/232
2. Python
https://www.learnpython.org/
https://bit.ly/3T7y4ta
https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
3. R
https://www.datacamp.com/courses/free-introduction-to-r
4. Data Structures
https://leetcode.com/study-plan/data-structure/
https://www.udacity.com/course/data-structures-and-algorithms-in-python--ud513
5. Data Visualization
https://www.freecodecamp.org/learn/data-visualization/
https://www.tableau.com/learn/training/20223
https://www.workout-wednesday.com/power-bi-challenges/
6. Excel
https://excel-practice-online.com/
https://www.w3schools.com/EXCEL/index.php
Join @free4unow_backup for more free courses
ENJOY LEARNING 👍👍
👇👇
1. SQL
https://mode.com/sql-tutorial/introduction-to-sql
https://news.1rj.ru/str/sqlspecialist/232
2. Python
https://www.learnpython.org/
https://bit.ly/3T7y4ta
https://www.geeksforgeeks.org/python-programming-language/learn-python-tutorial
3. R
https://www.datacamp.com/courses/free-introduction-to-r
4. Data Structures
https://leetcode.com/study-plan/data-structure/
https://www.udacity.com/course/data-structures-and-algorithms-in-python--ud513
5. Data Visualization
https://www.freecodecamp.org/learn/data-visualization/
https://www.tableau.com/learn/training/20223
https://www.workout-wednesday.com/power-bi-challenges/
6. Excel
https://excel-practice-online.com/
https://www.w3schools.com/EXCEL/index.php
Join @free4unow_backup for more free courses
ENJOY LEARNING 👍👍
👍6❤2
I’m a data analyst.
I clean and prepare data daily for my job.
This is how I would learn data cleaning for 2025:
✅Learn how to handle missing values
✅Learn data normalization and standardization
✅Learn to remove duplicates
✅Learn how to handle outliers
✅Learn how to merge and join datasets
✅Learn to identify and correct data inconsistencies
Data cleaning is an essential step to make your analysis meaningful.
I clean and prepare data daily for my job.
This is how I would learn data cleaning for 2025:
✅Learn how to handle missing values
✅Learn data normalization and standardization
✅Learn to remove duplicates
✅Learn how to handle outliers
✅Learn how to merge and join datasets
✅Learn to identify and correct data inconsistencies
Data cleaning is an essential step to make your analysis meaningful.
👍7❤1🔥1
Skills a data analyst needs:
1. Technical skills
📍 SQL
📍 Excel
📍 Data viz (Power BI/Tableau)
2. Soft skills
📍 Problem solving
📍 Communication
📍 Thinking (critical + analytical)
1. Technical skills
📍 SQL
📍 Excel
📍 Data viz (Power BI/Tableau)
2. Soft skills
📍 Problem solving
📍 Communication
📍 Thinking (critical + analytical)
❤6👍4
Anyone with an Internet connection can learn 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘀𝗶𝘀 𝗳𝗼𝗿 𝗳𝗿𝗲𝗲:
No more excuses now.
SQL - https://lnkd.in/gQkjdAWP
Python - https://lnkd.in/gQk8siKn
Excel - https://lnkd.in/d-txjPJn
Power BI - https://lnkd.in/gs6RgH2m
Tableau - https://lnkd.in/dDFdyS8y
Data Visualization - https://lnkd.in/dcHqhgn4
Data Cleaning - https://lnkd.in/dCXspR4p
Google Sheets - https://lnkd.in/d7eDi8pn
Statistics - https://lnkd.in/dgaw6KMW
Projects - https://lnkd.in/g2Fjzbma
Portfolio - https://news.1rj.ru/str/DataPortfolio
If you've read so far, do LIKE and share this channel with your friends & loved ones ♥️
Hope it helps :)
No more excuses now.
SQL - https://lnkd.in/gQkjdAWP
Python - https://lnkd.in/gQk8siKn
Excel - https://lnkd.in/d-txjPJn
Power BI - https://lnkd.in/gs6RgH2m
Tableau - https://lnkd.in/dDFdyS8y
Data Visualization - https://lnkd.in/dcHqhgn4
Data Cleaning - https://lnkd.in/dCXspR4p
Google Sheets - https://lnkd.in/d7eDi8pn
Statistics - https://lnkd.in/dgaw6KMW
Projects - https://lnkd.in/g2Fjzbma
Portfolio - https://news.1rj.ru/str/DataPortfolio
If you've read so far, do LIKE and share this channel with your friends & loved ones ♥️
Hope it helps :)
❤10👍4
⌨️ MongoDB Cheat Sheet
This Post includes a MongoDB cheat sheet to make it easy for our followers to work with MongoDB.
Working with databases
Working with rows
Working with Documents
Querying data from documents
Modifying data in documents
Searching
MongoDB is a flexible, document-orientated, NoSQL database program that can scale to any enterprise volume without compromising search performance.
This Post includes a MongoDB cheat sheet to make it easy for our followers to work with MongoDB.
Working with databases
Working with rows
Working with Documents
Querying data from documents
Modifying data in documents
Searching
👍4❤2