Let's now understand Data Science Roadmap in detail:
1. Math & Statistics (Foundation Layer)
This is the backbone of data science. Strong intuition here helps with algorithms, ML, and interpreting results.
Key Topics:
Linear Algebra: Vectors, matrices, matrix operations
Calculus: Derivatives, gradients (for optimization)
Probability: Bayes theorem, probability distributions
Statistics: Mean, median, mode, standard deviation, hypothesis testing, confidence intervals
Inferential Statistics: p-values, t-tests, ANOVA
Resources:
Khan Academy (Math & Stats)
"Think Stats" book
YouTube (StatQuest with Josh Starmer)
2. Python or R (Pick One for Analysis)
These are your main tools. Python is more popular in industry; R is strong in academia.
For Python Learn:
Variables, loops, functions, list comprehension
Libraries: NumPy, Pandas, Matplotlib, Seaborn
For R Learn:
Vectors, data frames, ggplot2, dplyr, tidyr
Goal: Be comfortable working with data, writing clean code, and doing basic analysis.
3. Data Wrangling (Data Cleaning & Manipulation)
Real-world data is messy. Cleaning and structuring it is essential.
What to Learn:
Handling missing values
Removing duplicates
String operations
Date and time operations
Merging and joining datasets
Reshaping data (pivot, melt)
Tools:
Python: Pandas
R: dplyr, tidyr
Mini Projects: Clean a messy CSV or scrape and structure web data.
4. Data Visualization (Telling the Story)
This is about showing insights visually for business users or stakeholders.
In Python:
Matplotlib, Seaborn, Plotly
In R:
ggplot2, plotly
Learn To:
Create bar plots, histograms, scatter plots, box plots
Design dashboards (can explore Power BI or Tableau)
Use color and layout to enhance clarity
5. Machine Learning (ML)
Now the real fun begins! Automate predictions and classifications.
Topics:
Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, Random Forests, SVM
Unsupervised Learning: Clustering (K-means), PCA
Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AUC
Cross-validation, Hyperparameter tuning
Libraries:
scikit-learn, xgboost
Practice On:
Kaggle datasets, Titanic survival, House price prediction
6. Deep Learning & NLP (Advanced Level)
Push your skills to the next level. Essential for AI, image, and text-based tasks.
Deep Learning:
Neural Networks, CNNs, RNNs
Frameworks: TensorFlow, Keras, PyTorch
NLP (Natural Language Processing):
Text preprocessing (tokenization, stemming, lemmatization)
TF-IDF, Word Embeddings
Sentiment Analysis, Topic Modeling
Transformers (BERT, GPT, etc.)
Projects:
Sentiment analysis from Twitter data
Image classifier using CNN
7. Projects (Build Your Portfolio)
Apply everything you've learned to real-world datasets.
Types of Projects:
EDA + ML project on a domain (finance, health, sports)
End-to-end ML pipeline
Deep Learning project (image or text)
Build a dashboard with your insights
Collaborate on GitHub, contribute to open-source
Tips:
Host projects on GitHub
Write about them on Medium, LinkedIn, or personal blog
8. ✅ Apply for Jobs (You're Ready!)
Now, you're prepared to apply with confidence.
Steps:
Prepare your resume tailored for DS roles
Sharpen interview skills (SQL, Python, case studies)
Practice on LeetCode, InterviewBit
Network on LinkedIn, attend meetups
Apply for internships or entry-level DS/DA roles
Keep learning and adapting. Data Science is vast and fast-moving—stay updated via newsletters, GitHub, and communities like Kaggle or Reddit.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content 😄👍
Hope this helps you 😊
1. Math & Statistics (Foundation Layer)
This is the backbone of data science. Strong intuition here helps with algorithms, ML, and interpreting results.
Key Topics:
Linear Algebra: Vectors, matrices, matrix operations
Calculus: Derivatives, gradients (for optimization)
Probability: Bayes theorem, probability distributions
Statistics: Mean, median, mode, standard deviation, hypothesis testing, confidence intervals
Inferential Statistics: p-values, t-tests, ANOVA
Resources:
Khan Academy (Math & Stats)
"Think Stats" book
YouTube (StatQuest with Josh Starmer)
2. Python or R (Pick One for Analysis)
These are your main tools. Python is more popular in industry; R is strong in academia.
For Python Learn:
Variables, loops, functions, list comprehension
Libraries: NumPy, Pandas, Matplotlib, Seaborn
For R Learn:
Vectors, data frames, ggplot2, dplyr, tidyr
Goal: Be comfortable working with data, writing clean code, and doing basic analysis.
3. Data Wrangling (Data Cleaning & Manipulation)
Real-world data is messy. Cleaning and structuring it is essential.
What to Learn:
Handling missing values
Removing duplicates
String operations
Date and time operations
Merging and joining datasets
Reshaping data (pivot, melt)
Tools:
Python: Pandas
R: dplyr, tidyr
Mini Projects: Clean a messy CSV or scrape and structure web data.
4. Data Visualization (Telling the Story)
This is about showing insights visually for business users or stakeholders.
In Python:
Matplotlib, Seaborn, Plotly
In R:
ggplot2, plotly
Learn To:
Create bar plots, histograms, scatter plots, box plots
Design dashboards (can explore Power BI or Tableau)
Use color and layout to enhance clarity
5. Machine Learning (ML)
Now the real fun begins! Automate predictions and classifications.
Topics:
Supervised Learning: Linear Regression, Logistic Regression, Decision Trees, Random Forests, SVM
Unsupervised Learning: Clustering (K-means), PCA
Model Evaluation: Accuracy, Precision, Recall, F1-score, ROC-AUC
Cross-validation, Hyperparameter tuning
Libraries:
scikit-learn, xgboost
Practice On:
Kaggle datasets, Titanic survival, House price prediction
6. Deep Learning & NLP (Advanced Level)
Push your skills to the next level. Essential for AI, image, and text-based tasks.
Deep Learning:
Neural Networks, CNNs, RNNs
Frameworks: TensorFlow, Keras, PyTorch
NLP (Natural Language Processing):
Text preprocessing (tokenization, stemming, lemmatization)
TF-IDF, Word Embeddings
Sentiment Analysis, Topic Modeling
Transformers (BERT, GPT, etc.)
Projects:
Sentiment analysis from Twitter data
Image classifier using CNN
7. Projects (Build Your Portfolio)
Apply everything you've learned to real-world datasets.
Types of Projects:
EDA + ML project on a domain (finance, health, sports)
End-to-end ML pipeline
Deep Learning project (image or text)
Build a dashboard with your insights
Collaborate on GitHub, contribute to open-source
Tips:
Host projects on GitHub
Write about them on Medium, LinkedIn, or personal blog
8. ✅ Apply for Jobs (You're Ready!)
Now, you're prepared to apply with confidence.
Steps:
Prepare your resume tailored for DS roles
Sharpen interview skills (SQL, Python, case studies)
Practice on LeetCode, InterviewBit
Network on LinkedIn, attend meetups
Apply for internships or entry-level DS/DA roles
Keep learning and adapting. Data Science is vast and fast-moving—stay updated via newsletters, GitHub, and communities like Kaggle or Reddit.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
Credits: https://whatsapp.com/channel/0029Va4QUHa6rsQjhITHK82y
Like if you need similar content 😄👍
Hope this helps you 😊
❤3
𝟳 𝗕𝗲𝘀𝘁 𝗙𝗿𝗲𝗲 𝗥𝗲𝘀𝗼𝘂𝗿𝗰𝗲𝘀 𝘁𝗼 𝗟𝗲𝗮𝗿𝗻 & 𝗣𝗿𝗮𝗰𝘁𝗶𝗰𝗲 𝗣𝘆𝘁𝗵𝗼𝗻 𝗳𝗼𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀😍
💻 You don’t need to spend a rupee to master Python!🐍
Whether you’re an aspiring Data Analyst, Developer, or Tech Enthusiast, these 7 completely free platforms help you go from zero to confident coder👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4l5XXY2
Enjoy Learning ✅️
💻 You don’t need to spend a rupee to master Python!🐍
Whether you’re an aspiring Data Analyst, Developer, or Tech Enthusiast, these 7 completely free platforms help you go from zero to confident coder👨💻📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4l5XXY2
Enjoy Learning ✅️
❤1
Lawyers charge for this kind of work. ChatGPT does it for free
Try these 7 prompts:
Try these 7 prompts:
❤3
𝗙𝗥𝗘𝗘 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲😍
Dreaming of a career in Data Analytics but don’t know where to begin?
The Career Essentials in Data Analysis program by Microsoft and LinkedIn is a 100% FREE learning path designed to equip you with real-world skills and industry-recognized certification.
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4kPowBj
Enroll For FREE & Get Certified ✅️
Dreaming of a career in Data Analytics but don’t know where to begin?
The Career Essentials in Data Analysis program by Microsoft and LinkedIn is a 100% FREE learning path designed to equip you with real-world skills and industry-recognized certification.
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4kPowBj
Enroll For FREE & Get Certified ✅️
🤗 HuggingFace is offering 9 AI courses for FREE!
These 9 courses covers LLMs, Agents, Deep RL, Audio and more
1️⃣ LLM Course:
https://huggingface.co/learn/llm-course/chapter1/1
2️⃣ Agents Course:
https://huggingface.co/learn/agents-course/unit0/introduction
3️⃣ Deep Reinforcement Learning Course:
https://huggingface.co/learn/deep-rl-course/unit0/introduction
4️⃣ Open-Source AI Cookbook:
https://huggingface.co/learn/cookbook/index
5️⃣ Machine Learning for Games Course
https://huggingface.co/learn/ml-games-course/unit0/introduction
6️⃣ Hugging Face Audio course:
https://huggingface.co/learn/audio-course/chapter0/introduction
7️⃣ Vision Course:
https://huggingface.co/learn/computer-vision-course/unit0/welcome/welcome
8️⃣ Machine Learning for 3D Course:
https://huggingface.co/learn/ml-for-3d-course/unit0/introduction
9️⃣ Hugging Face Diffusion Models Course:
https://huggingface.co/learn/diffusion-course/unit0/1
These 9 courses covers LLMs, Agents, Deep RL, Audio and more
1️⃣ LLM Course:
https://huggingface.co/learn/llm-course/chapter1/1
2️⃣ Agents Course:
https://huggingface.co/learn/agents-course/unit0/introduction
3️⃣ Deep Reinforcement Learning Course:
https://huggingface.co/learn/deep-rl-course/unit0/introduction
4️⃣ Open-Source AI Cookbook:
https://huggingface.co/learn/cookbook/index
5️⃣ Machine Learning for Games Course
https://huggingface.co/learn/ml-games-course/unit0/introduction
6️⃣ Hugging Face Audio course:
https://huggingface.co/learn/audio-course/chapter0/introduction
7️⃣ Vision Course:
https://huggingface.co/learn/computer-vision-course/unit0/welcome/welcome
8️⃣ Machine Learning for 3D Course:
https://huggingface.co/learn/ml-for-3d-course/unit0/introduction
9️⃣ Hugging Face Diffusion Models Course:
https://huggingface.co/learn/diffusion-course/unit0/1
❤4
Essential Programming Languages to Learn Data Science 👇👇
1. Python: Python is one of the most popular programming languages for data science due to its simplicity, versatility, and extensive library support (such as NumPy, Pandas, and Scikit-learn).
2. R: R is another popular language for data science, particularly in academia and research settings. It has powerful statistical analysis capabilities and a wide range of packages for data manipulation and visualization.
3. SQL: SQL (Structured Query Language) is essential for working with databases, which are a critical component of data science projects. Knowledge of SQL is necessary for querying and manipulating data stored in relational databases.
4. Java: Java is a versatile language that is widely used in enterprise applications and big data processing frameworks like Apache Hadoop and Apache Spark. Knowledge of Java can be beneficial for working with large-scale data processing systems.
5. Scala: Scala is a functional programming language that is often used in conjunction with Apache Spark for distributed data processing. Knowledge of Scala can be valuable for building high-performance data processing applications.
6. Julia: Julia is a high-performance language specifically designed for scientific computing and data analysis. It is gaining popularity in the data science community due to its speed and ease of use for numerical computations.
7. MATLAB: MATLAB is a proprietary programming language commonly used in engineering and scientific research for data analysis, visualization, and modeling. It is particularly useful for signal processing and image analysis tasks.
Free Resources to master data analytics concepts 👇👇
Data Analysis with R
Intro to Data Science
Practical Python Programming
SQL for Data Analysis
Java Essential Concepts
Machine Learning with Python
Data Science Project Ideas
Learning SQL FREE Book
Join @free4unow_backup for more free resources.
ENJOY LEARNING👍👍
1. Python: Python is one of the most popular programming languages for data science due to its simplicity, versatility, and extensive library support (such as NumPy, Pandas, and Scikit-learn).
2. R: R is another popular language for data science, particularly in academia and research settings. It has powerful statistical analysis capabilities and a wide range of packages for data manipulation and visualization.
3. SQL: SQL (Structured Query Language) is essential for working with databases, which are a critical component of data science projects. Knowledge of SQL is necessary for querying and manipulating data stored in relational databases.
4. Java: Java is a versatile language that is widely used in enterprise applications and big data processing frameworks like Apache Hadoop and Apache Spark. Knowledge of Java can be beneficial for working with large-scale data processing systems.
5. Scala: Scala is a functional programming language that is often used in conjunction with Apache Spark for distributed data processing. Knowledge of Scala can be valuable for building high-performance data processing applications.
6. Julia: Julia is a high-performance language specifically designed for scientific computing and data analysis. It is gaining popularity in the data science community due to its speed and ease of use for numerical computations.
7. MATLAB: MATLAB is a proprietary programming language commonly used in engineering and scientific research for data analysis, visualization, and modeling. It is particularly useful for signal processing and image analysis tasks.
Free Resources to master data analytics concepts 👇👇
Data Analysis with R
Intro to Data Science
Practical Python Programming
SQL for Data Analysis
Java Essential Concepts
Machine Learning with Python
Data Science Project Ideas
Learning SQL FREE Book
Join @free4unow_backup for more free resources.
ENJOY LEARNING👍👍
❤2
Forwarded from Artificial Intelligence
𝟱 𝗙𝗿𝗲𝗲 𝗚𝗼𝗼𝗴𝗹𝗲 𝗔𝗜 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗞𝗶𝗰𝗸𝘀𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗔𝗿𝘁𝗶𝗳𝗶𝗰𝗶𝗮𝗹 𝗜𝗻𝘁𝗲𝗹𝗹𝗶𝗴𝗲𝗻𝗰𝗲 𝗖𝗮𝗿𝗲𝗲𝗿😍
🎓 You don’t need to break the bank to break into AI!🪩
If you’ve been searching for beginner-friendly, certified AI learning—Google Cloud has you covered🤝👨💻
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3SZQRIU
📍All taught by industry-leading instructors✅️
🎓 You don’t need to break the bank to break into AI!🪩
If you’ve been searching for beginner-friendly, certified AI learning—Google Cloud has you covered🤝👨💻
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3SZQRIU
📍All taught by industry-leading instructors✅️
❤3
Forwarded from Python Projects & Resources
𝗧𝗼𝗽 𝟱 𝗙𝗿𝗲𝗲 𝗞𝗮𝗴𝗴𝗹𝗲 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘄𝗶𝘁𝗵 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗝𝘂𝗺𝗽𝘀𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗖𝗮𝗿𝗲𝗲𝗿😍
Want to break into Data Science but not sure where to start?🚀
These free Kaggle micro-courses are the perfect launchpad — beginner-friendly, self-paced, and yes, they come with certifications!👨🎓🎊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4l164FN
No subnoscription. No hidden fees. Just pure learning from a trusted platform✅️
Want to break into Data Science but not sure where to start?🚀
These free Kaggle micro-courses are the perfect launchpad — beginner-friendly, self-paced, and yes, they come with certifications!👨🎓🎊
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/4l164FN
No subnoscription. No hidden fees. Just pure learning from a trusted platform✅️
❤1
Forwarded from Artificial Intelligence
𝟱 𝗙𝗿𝗲𝗲 𝗠𝗶𝗰𝗿𝗼𝘀𝗼𝗳𝘁 + 𝗟𝗶𝗻𝗸𝗲𝗱𝗜𝗻 𝗖𝗮𝗿𝗲𝗲𝗿 𝗘𝘀𝘀𝗲𝗻𝘁𝗶𝗮𝗹 𝗖𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻𝘀 𝘁𝗼 𝗕𝗼𝗼𝘀𝘁 𝗬𝗼𝘂𝗿 𝗥𝗲𝘀𝘂𝗺𝗲😍
Ready to upgrade your career without spending a dime?✨️
From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!📲📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/469RCGK
Designed to equip you with in-demand skills and industry-recognised certifications📜✅️
Ready to upgrade your career without spending a dime?✨️
From Generative AI to Project Management, get trained by global tech leaders and earn certificates that carry real value on your resume and LinkedIn profile!📲📌
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/469RCGK
Designed to equip you with in-demand skills and industry-recognised certifications📜✅️
10 Free Resources to Learn AI in 2025
✅ Google AI Hub – Crash courses, tutorials, and tools straight from Google
✅ Fast.ai – Practical deep learning for coders, no PhD required
✅ DeepLearning.AI’s YouTube – Short, high-quality videos on ML & AI concepts
✅ Hugging Face Course – Learn to work with Transformers hands-on
✅ MIT OpenCourseWare (AI & ML) – Free college-level AI courses
✅ Kaggle Learn – Interactive, notebook-based tutorials on ML, Python & SQL
✅ Microsoft Learn (AI Track) – Modules on Azure AI, Python, and more
✅ Stanford CS229/CS231n Lectures – Deep dives into ML and deep learning
✅ DataSimplifier – Free Data Analytics Resources
✅ OpenAI Cookbook – Real-world GPT examples & best practices
Free Resources: https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
ENJOY LEARNING 👍👍
✅ Google AI Hub – Crash courses, tutorials, and tools straight from Google
✅ Fast.ai – Practical deep learning for coders, no PhD required
✅ DeepLearning.AI’s YouTube – Short, high-quality videos on ML & AI concepts
✅ Hugging Face Course – Learn to work with Transformers hands-on
✅ MIT OpenCourseWare (AI & ML) – Free college-level AI courses
✅ Kaggle Learn – Interactive, notebook-based tutorials on ML, Python & SQL
✅ Microsoft Learn (AI Track) – Modules on Azure AI, Python, and more
✅ Stanford CS229/CS231n Lectures – Deep dives into ML and deep learning
✅ DataSimplifier – Free Data Analytics Resources
✅ OpenAI Cookbook – Real-world GPT examples & best practices
Free Resources: https://whatsapp.com/channel/0029Vamhzk5JENy1Zg9KmO2g
ENJOY LEARNING 👍👍
❤1
𝟱 𝗙𝗥𝗘𝗘 𝗛𝗮𝗿𝘃𝗮𝗿𝗱 𝗗𝗮𝘁𝗮 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝘁𝗼 𝗞𝗶𝗰𝗸𝘀𝘁𝗮𝗿𝘁 𝗬𝗼𝘂𝗿 𝗗𝗮𝘁𝗮 𝗔𝗻𝗮𝗹𝘆𝘁𝗶𝗰𝘀 & 𝗗𝗮𝘁𝗮 𝗦𝗰𝗶𝗲𝗻𝗰𝗲 𝗝𝗼𝘂𝗿𝗻𝗲𝘆😍
Want to break into Data Analytics or Data Science—but don’t know where to begin?🚀
Harvard University offers 5 completely free online courses that will build your foundation in Python, statistics, machine learning, and data visualization — no prior experience or degree required!👨🎓💫
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3T3ZhPu
These Harvard-certified courses will boost your resume, LinkedIn profile, and skills✅️
Want to break into Data Analytics or Data Science—but don’t know where to begin?🚀
Harvard University offers 5 completely free online courses that will build your foundation in Python, statistics, machine learning, and data visualization — no prior experience or degree required!👨🎓💫
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3T3ZhPu
These Harvard-certified courses will boost your resume, LinkedIn profile, and skills✅️
❤1
AI Myths vs. Reality
1️⃣ AI Can Think Like Humans – ❌ Myth
🤖 AI doesn’t "think" or "understand" like humans. It predicts based on patterns in data but lacks reasoning or emotions.
2️⃣ AI Will Replace All Jobs – ❌ Myth
👨💻 AI automates repetitive tasks but creates new job opportunities in AI development, ethics, and oversight.
3️⃣ AI is 100% Accurate – ❌ Myth
⚠ AI can generate incorrect or biased outputs because it learns from imperfect human data.
4️⃣ AI is the Same as AGI – ❌ Myth
🧠 Generative AI is task-specific, while AGI (which doesn’t exist yet) would have human-like intelligence.
5️⃣ AI is Only for Big Tech – ❌ Myth
💡 Startups, small businesses, and individuals use AI for marketing, automation, and content creation.
6️⃣ AI Models Don’t Need Human Supervision – ❌ Myth
🔍 AI requires human oversight to ensure ethical use and prevent misinformation.
7️⃣ AI Will Keep Getting Smarter Forever – ❌ Myth
📉 AI is limited by its training data and doesn’t improve on its own without new data and updates.
AI is powerful but not magic. Knowing its limits helps us use it wisely. 🚀
1️⃣ AI Can Think Like Humans – ❌ Myth
🤖 AI doesn’t "think" or "understand" like humans. It predicts based on patterns in data but lacks reasoning or emotions.
2️⃣ AI Will Replace All Jobs – ❌ Myth
👨💻 AI automates repetitive tasks but creates new job opportunities in AI development, ethics, and oversight.
3️⃣ AI is 100% Accurate – ❌ Myth
⚠ AI can generate incorrect or biased outputs because it learns from imperfect human data.
4️⃣ AI is the Same as AGI – ❌ Myth
🧠 Generative AI is task-specific, while AGI (which doesn’t exist yet) would have human-like intelligence.
5️⃣ AI is Only for Big Tech – ❌ Myth
💡 Startups, small businesses, and individuals use AI for marketing, automation, and content creation.
6️⃣ AI Models Don’t Need Human Supervision – ❌ Myth
🔍 AI requires human oversight to ensure ethical use and prevent misinformation.
7️⃣ AI Will Keep Getting Smarter Forever – ❌ Myth
📉 AI is limited by its training data and doesn’t improve on its own without new data and updates.
AI is powerful but not magic. Knowing its limits helps us use it wisely. 🚀
❤1
Forwarded from Python Projects & Resources
𝟱 𝗙𝗥𝗘𝗘 𝗣𝘆𝘁𝗵𝗼𝗻 𝗖𝗼𝘂𝗿𝘀𝗲𝘀 𝗳𝗼𝗿 𝗕𝗲𝗴𝗶𝗻𝗻𝗲𝗿𝘀 𝗯𝘆 𝗛𝗮𝗿𝘃𝗮𝗿𝗱, 𝗜𝗕𝗠, 𝗨𝗱𝗮𝗰𝗶𝘁𝘆 & 𝗠𝗼𝗿𝗲😍
Looking to learn Python from scratch—without spending a rupee? 💻
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion🔥👨🎓
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HNeyBQ
Kickstart your career✅️
Looking to learn Python from scratch—without spending a rupee? 💻
Offered by trusted platforms like Harvard University, IBM, Udacity, freeCodeCamp, and OpenClassrooms, each course is self-paced, easy to follow, and includes a certificate of completion🔥👨🎓
𝐋𝐢𝐧𝐤👇:-
https://pdlink.in/3HNeyBQ
Kickstart your career✅️
❤3
Lawyers charge for this kind of work. ChatGPT does it for free
Try these 7 prompts:
Try these 7 prompts:
👍3❤1