Forwarded from Old mice & hardware by Pavlov
Процессорный модуль от мейнфрейма 1975 года Amdahl 470V/6. Сначала Джин Амдал спроектировал System/360, а потом ушел из IBM и запустил свою линейку совместимых машин, которые были дешевле и шустрее.
Как они дебажили ошибки с такой разводкой, страшный сон инженера.
Модули иногда встречаются на ebay примерно за $1к
#cpu
Как они дебажили ошибки с такой разводкой, страшный сон инженера.
Модули иногда встречаются на ebay примерно за $1к
#cpu
🔥28🙈11
Forwarded from еба́ные идеи для резерча
Все задаются вопросом, почему Open AI не спешит выпускать GPT-5, а называет свои модели 4o, o1. Выкладываем все карты на стол. Число перед "o" — количество форвардов, число после "o" — количество бэквардов. Есть инсайт, что GPT o2 достигнет AGI. Сами понимаете почему.
"o" — многие читают по ошибке, как "о", но это неправильно. Правильно читать "круг": "гпт-4круг", "гпт-4круг-мини", "гпт-круг1".
Оставайтесь с нами, чтобы получать самую правдивую информацию первыми. Не дайте себя обмануть.
"o" — многие читают по ошибке, как "о", но это неправильно. Правильно читать "круг": "гпт-4круг", "гпт-4круг-мини", "гпт-круг1".
Оставайтесь с нами, чтобы получать самую правдивую информацию первыми. Не дайте себя обмануть.
🦄92💊50😁24🤡12🥴5🤔2👍1
Forwarded from LakoMoor
This media is not supported in your browser
VIEW IN TELEGRAM
Хочу такое...
Помню, какой-то канал выкладывал пост про робота DJI, которого сделали чуваки из обнимающеелицо 🤗, с idefics2, Whisper и Parlel-TTS. Кстати, вот код на Github и сам Пост.
Но тут Vedal987 (создатель нейросама) сделал что-то похожее на каком-то DIY-ките. Выглядит прикольно.
Помню, какой-то канал выкладывал пост про робота DJI, которого сделали чуваки из обнимающеелицо 🤗, с idefics2, Whisper и Parlel-TTS. Кстати, вот код на Github и сам Пост.
Но тут Vedal987 (создатель нейросама) сделал что-то похожее на каком-то DIY-ките. Выглядит прикольно.
🔥32 12🍓5👍2🤡2😨1
Forwarded from DLStories
Мы наконец открыли набор на осенний семестр Deep Learning School!
DLschool — это школа при ФПМИ МФТИ, где мы учим нейронным сетям с самых азов до продвинутого уровня. Полный курс состоит из двух частей, каждая из которых длится полгода.
- Первая часть посвящена введению в нейросети и компьютерному зрению. Начинаем с основ машинного обучения и нейросетей, переходим к CNN для обработки картинок, заканчиваем переносом стиля изображений и ГАНами. В этом семестре мы улучшили многие занятия, записали новые версии лекций и семинаров и обновили домашки.
- Вторая часть полностью посвящена обработке естественного языка (NLP). Начинаем с эмбеддингов слов и заканчиваем GPT-2,3, RLHF, RAG и другими актуальными темами вокруг LLM.
Сейчас идет набор на оба потока обучения — часть 1 (введение в DL + CV) и часть 2 (NLP).
Особенность нашей школы в том, что мы даем много практики (теория при этом тоже есть, разумеется, и немало). Вам предстоит много практических домашних заданий и самостоятельный итоговый проект в конце семестра. По окончании обучения вы точно получите нужные практические навыки работы с нейросетями. Больше информации об организации курса и программы обучения можно найти тут.
Преподаватели школы — ведущие специалисты российских и зарубежных IT-компаний и научные сотрудники исследовательских лабораторий. Среди них — я (Таня), буду вести у вас несколько лекций в обеих частях курса.
Школа бесплатная. Полностью онлайн: учиться можно из любой точки мира, где есть интернет. Занятия проходят раз в неделю — лекция, семинар и домашнее задание. Обучение проходит на платформе Stepik. Берем всех, отбора нет.
❗️Для первой чати курса также есть возможность приобрести дополнительный пакет, в который входит индивидуальная поддержка от менторов и преподавателей в прохождении курса, а также дополнительные вебинары. Подробнее о нем читайте на нашем сайте.
Старт обучения — 21 сентября. В этот день откроется первое занятие и будет живой вводный вебинар.
Чтобы зарегистрироваться на курс, нажмите на кнопку "поступить" на нашем сайте.
Ссылки:
Наш сайт
Подробная программа и оргинформация обоих частей курса
Ответы на часто задаваемые вопросы (F.A.Q)
Наш YouTube (тут видео всех лекций и семинаров школы, а также открытые лекции и интервью)
Наша группа VK
🧡 Поддержать нашу школу на Boosty
Если остались вопросы, пишите нам на почту (dlphystech@gmail.com) или в комментарии под этим постом.
Ждём вас в чатике курса в новом семестре!
DLschool — это школа при ФПМИ МФТИ, где мы учим нейронным сетям с самых азов до продвинутого уровня. Полный курс состоит из двух частей, каждая из которых длится полгода.
- Первая часть посвящена введению в нейросети и компьютерному зрению. Начинаем с основ машинного обучения и нейросетей, переходим к CNN для обработки картинок, заканчиваем переносом стиля изображений и ГАНами. В этом семестре мы улучшили многие занятия, записали новые версии лекций и семинаров и обновили домашки.
- Вторая часть полностью посвящена обработке естественного языка (NLP). Начинаем с эмбеддингов слов и заканчиваем GPT-2,3, RLHF, RAG и другими актуальными темами вокруг LLM.
Сейчас идет набор на оба потока обучения — часть 1 (введение в DL + CV) и часть 2 (NLP).
Особенность нашей школы в том, что мы даем много практики (теория при этом тоже есть, разумеется, и немало). Вам предстоит много практических домашних заданий и самостоятельный итоговый проект в конце семестра. По окончании обучения вы точно получите нужные практические навыки работы с нейросетями. Больше информации об организации курса и программы обучения можно найти тут.
Преподаватели школы — ведущие специалисты российских и зарубежных IT-компаний и научные сотрудники исследовательских лабораторий. Среди них — я (Таня), буду вести у вас несколько лекций в обеих частях курса.
Школа бесплатная. Полностью онлайн: учиться можно из любой точки мира, где есть интернет. Занятия проходят раз в неделю — лекция, семинар и домашнее задание. Обучение проходит на платформе Stepik. Берем всех, отбора нет.
❗️Для первой чати курса также есть возможность приобрести дополнительный пакет, в который входит индивидуальная поддержка от менторов и преподавателей в прохождении курса, а также дополнительные вебинары. Подробнее о нем читайте на нашем сайте.
Старт обучения — 21 сентября. В этот день откроется первое занятие и будет живой вводный вебинар.
Чтобы зарегистрироваться на курс, нажмите на кнопку "поступить" на нашем сайте.
Ссылки:
Наш сайт
Подробная программа и оргинформация обоих частей курса
Ответы на часто задаваемые вопросы (F.A.Q)
Наш YouTube (тут видео всех лекций и семинаров школы, а также открытые лекции и интервью)
Наша группа VK
🧡 Поддержать нашу школу на Boosty
Если остались вопросы, пишите нам на почту (dlphystech@gmail.com) или в комментарии под этим постом.
Ждём вас в чатике курса в новом семестре!
👍27🔥17💯6
Пол часа с хуем в день лучше чем стажёр для перебора параметров rlя
🍓61🙉9💯6 4😢3👎1💋1
cссука, к сумке с 1квт потрбления я не был готов, но получить h100 не сильно проще чем биркин. По меньшей мере для биркина достаточно только ртом работать
купить
купить
😁99🤡4❤🔥3👎2👍1🤔1
Собрал Сэм Альтман ресерчеров в штабе OpenAI:
— РЕСЕРЧЕРЫ!!! Мы великий народ?
— ДАААААА!
— Тогда почему у нас нет самой умной в мире LLM?
— Ну… Давайте тренировать.
Срубили самые здоровые круглые тезноры, выдолбили токены, по старым ресерчерским рецептам приготовили трансформеры, сделали энкодеры и декодеры, обучили на самом охуенном кластере.
— Куда ее запустим?
— Давайте на Hugging Face!
— А почему на Hugging Face?
— А я других не знаю…
Написали на нейронке «На Hugging Face», столпили всех ресерчеров, релизнули новую версию OpenAI o1… КАК ЕБАНЕТ!… Короче, местный армагеддон: дым, гарь, все валяются… Сэм Альтман без ноги, без руки, оглядывается:
— Thinking... Нихуя себе… Actually, there are two R's in "strawberry".
— РЕСЕРЧЕРЫ!!! Мы великий народ?
— ДАААААА!
— Тогда почему у нас нет самой умной в мире LLM?
— Ну… Давайте тренировать.
Срубили самые здоровые круглые тезноры, выдолбили токены, по старым ресерчерским рецептам приготовили трансформеры, сделали энкодеры и декодеры, обучили на самом охуенном кластере.
— Куда ее запустим?
— Давайте на Hugging Face!
— А почему на Hugging Face?
— А я других не знаю…
Написали на нейронке «На Hugging Face», столпили всех ресерчеров, релизнули новую версию OpenAI o1… КАК ЕБАНЕТ!… Короче, местный армагеддон: дым, гарь, все валяются… Сэм Альтман без ноги, без руки, оглядывается:
— Thinking... Нихуя себе… Actually, there are two R's in "strawberry".
7😁187🍓68🥴28 12 6👏4👍1🔥1🤔1
Forwarded from gonzo-обзоры ML статей
Ура! Моя книга “Deep Learning with JAX” (в девичестве "JAX in Action") вышла в печать! Я только что получил свои бумажные копии 🙂
https://www.manning.com/books/deep-learning-with-jax
Для тех, кто не следил, JAX -- это питоновская библиотека для высокопроизводительных вычислений и large-scale ML, с отличной поддержкой ускорителей, в частности TPU.
На данный момент JAX является вполне реальной альтернативой TensorFlow и PyTorch (torch.func, в юности functorch, до сих пор пытается угнаться и всё ещё beta), и многие компании, в частности Google DeepMind, Cohere, xAI и прочие, перешли на него. На JAX созданы такие известные модели как AlphaFold, GraphCast, Gemini, Gemma, Grok, и я уже молчу сколько разного рисёча.
JAX -- это больше, чем библиотека для ML, это библиотека для очень разных высокопроизводительных, параллельных и распределённых вычислений. Не просто так его называют “NumPy на стероидах”. За пределами ML/DL, например, JAX активно используется для физических симуляций, и на GitHub есть уже огромное количество производных библиотек.
Сейчас отличное время, чтобы застолбить себе немного будущего :)
Отдельная радость должна быть для любителей функционального программирования, ибо JAX -- это первый фреймворк с большим охватом, работающий в этой парадигме. Очень прикольно использовать функции для трансформации других функций. Написали функцию для обработки одного элемента -- трансформировали в функцию для обработки батча. Написали сложную математическую функцию -- трансформировали в функцию, вычисляющую её производную. Аналогично с компиляцией и распараллеливанием. Никаких hidden state и side-effects, код чист, красив и понятен. А также БЫСТР! (см. https://x.com/fchollet/status/1735420737744507374)
Книга состоит из трёх частей на 370+ страницах.
Part 1: First steps.
Верхнеуровневое введение в JAX для менеджеров и вообще всех, рассказывающее, где и почему стоит использовать JAX. Плюс отдельная глава для тех, кто любит видеть код, где показан полный цикл реализации простой нейросети с использованием большинства фишек JAX.
Part 2: Core JAX.
Основная часть книги, где покрыты все основы JAX, шаг за шагом. От работы с массивами (тензорами), autodiff, компиляция, векторизация, параллелизация и шардирование, случайные числа (в функциональном программировании старые приёмы из NumPy не работают эффективно, зато теперь всё наглядно и воспроизводимо!) и pytrees.
Part 3: Ecosystem.
Большая глава с практическим знакомством с экосистемой высокоуровневых библиотек для DL (Flax, Optax, Orbax, CLU, …), а также примеры использования HuggingFace Transformers/Diffusers, которые давно уже добавили поддержку JAX. Также есть отдельная глава с очень верхнеуровневым и широким обзором того, что есть в JAX и вокруг за пределами нейросетевого мейнстрима.
Много крутых и умных людей читало и ревьюило мою книгу, спасибо куче GDE и не только. И отдельное спасибо Франсуа Шолле за добрые слова 🙂
“A comprehensive guide to mastering JAX, whether you’re a seasoned deep learning practitioner or just venturing into the realm of differentiable programming and large-scale numerical simulations.”
-- François Chollet, Software Engineer, Google
В общем это был прикольный опыт, я доволен результатом, надеюсь, вам тоже понравится.
Ещё отдельное спасибо всем, кто поддерживал GonzoML на Патреоне (https://www.patreon.com/GonzoML). Всем действующим платным членам нашей тесной группы я отправил коды для получения книги бесплатно (проверьте сообщения!) -- у вас будет постоянно обновляемая версия (a JAX очевидно будет меняться!) в онлайн доступе.
https://www.manning.com/books/deep-learning-with-jax
Для тех, кто не следил, JAX -- это питоновская библиотека для высокопроизводительных вычислений и large-scale ML, с отличной поддержкой ускорителей, в частности TPU.
На данный момент JAX является вполне реальной альтернативой TensorFlow и PyTorch (torch.func, в юности functorch, до сих пор пытается угнаться и всё ещё beta), и многие компании, в частности Google DeepMind, Cohere, xAI и прочие, перешли на него. На JAX созданы такие известные модели как AlphaFold, GraphCast, Gemini, Gemma, Grok, и я уже молчу сколько разного рисёча.
JAX -- это больше, чем библиотека для ML, это библиотека для очень разных высокопроизводительных, параллельных и распределённых вычислений. Не просто так его называют “NumPy на стероидах”. За пределами ML/DL, например, JAX активно используется для физических симуляций, и на GitHub есть уже огромное количество производных библиотек.
Сейчас отличное время, чтобы застолбить себе немного будущего :)
Отдельная радость должна быть для любителей функционального программирования, ибо JAX -- это первый фреймворк с большим охватом, работающий в этой парадигме. Очень прикольно использовать функции для трансформации других функций. Написали функцию для обработки одного элемента -- трансформировали в функцию для обработки батча. Написали сложную математическую функцию -- трансформировали в функцию, вычисляющую её производную. Аналогично с компиляцией и распараллеливанием. Никаких hidden state и side-effects, код чист, красив и понятен. А также БЫСТР! (см. https://x.com/fchollet/status/1735420737744507374)
Книга состоит из трёх частей на 370+ страницах.
Part 1: First steps.
Верхнеуровневое введение в JAX для менеджеров и вообще всех, рассказывающее, где и почему стоит использовать JAX. Плюс отдельная глава для тех, кто любит видеть код, где показан полный цикл реализации простой нейросети с использованием большинства фишек JAX.
Part 2: Core JAX.
Основная часть книги, где покрыты все основы JAX, шаг за шагом. От работы с массивами (тензорами), autodiff, компиляция, векторизация, параллелизация и шардирование, случайные числа (в функциональном программировании старые приёмы из NumPy не работают эффективно, зато теперь всё наглядно и воспроизводимо!) и pytrees.
Part 3: Ecosystem.
Большая глава с практическим знакомством с экосистемой высокоуровневых библиотек для DL (Flax, Optax, Orbax, CLU, …), а также примеры использования HuggingFace Transformers/Diffusers, которые давно уже добавили поддержку JAX. Также есть отдельная глава с очень верхнеуровневым и широким обзором того, что есть в JAX и вокруг за пределами нейросетевого мейнстрима.
Много крутых и умных людей читало и ревьюило мою книгу, спасибо куче GDE и не только. И отдельное спасибо Франсуа Шолле за добрые слова 🙂
“A comprehensive guide to mastering JAX, whether you’re a seasoned deep learning practitioner or just venturing into the realm of differentiable programming and large-scale numerical simulations.”
-- François Chollet, Software Engineer, Google
В общем это был прикольный опыт, я доволен результатом, надеюсь, вам тоже понравится.
Ещё отдельное спасибо всем, кто поддерживал GonzoML на Патреоне (https://www.patreon.com/GonzoML). Всем действующим платным членам нашей тесной группы я отправил коды для получения книги бесплатно (проверьте сообщения!) -- у вас будет постоянно обновляемая версия (a JAX очевидно будет меняться!) в онлайн доступе.
Manning Publications
Deep Learning with JAX - Grigory Sapunov
Accelerate deep learning and other number-intensive tasks with JAX, Google’s awesome high-performance numerical computing library.
👍66🥴18🔥10❤🔥2
Love. Death. Transformers.
Вышла 4o у нас дома, стриминг аудио в обе стороны, перебивает и только английский. Играться тут Анонс La République est maniaque, опять ребята из Франции
GitHub
GitHub - kyutai-labs/moshi: Moshi is a speech-text foundation model and full-duplex spoken dialogue framework. It uses Mimi, a…
Moshi is a speech-text foundation model and full-duplex spoken dialogue framework. It uses Mimi, a state-of-the-art streaming neural audio codec. - kyutai-labs/moshi
🔥10😐2👍1
Forwarded from Старший Авгур
https://huggingface.co/datasets/nyuuzyou/chatgpt-in-russia-qa
Оригинальный пост.
А что у нас тут? 600к вопросов (и ответов) с чатгпт-в-россии.рф!
Я, если честно, и не знал, что такой сайт существует.
Оригинальный пост.
А что у нас тут? 600к вопросов (и ответов) с чатгпт-в-россии.рф!
Я, если честно, и не знал, что такой сайт существует.
huggingface.co
nyuuzyou/chatgpt-in-russia-qa · Datasets at Hugging Face
We’re on a journey to advance and democratize artificial intelligence through open source and open science.
50👍8🤮7🔥4😁3🤔1
ищу ios/android разраба кто хочет ковырять llm на мобилках, пишите в личку. @transformerslovedeatch
🍓38💩11😐3
Media is too big
VIEW IN TELEGRAM
Через годик качество ген3 будут гонять на локальных железках и возможно будет ренисанс старых игр.
Vid2vid очень хорошо выглядит
Vid2vid очень хорошо выглядит
👍54🤡19🍓8