Machine Learning – Telegram
Machine Learning
25 subscribers
12 photos
3 files
181 links
Собираем информацию про машинное обучение, нейросети
Download Telegram
Forwarded from Big Data Science
🌎 5 Python-библиотек для работы с картами
Обрабатывать географические координаты и визуализировать карты DS-специалисту помогут следующие Python-библиотеки:
Geoplotlib с целым набором инструментов для создания карт и построения географических данных. Эта интегрированная с Pandas библиотека позволит строить фоновые карты (choropleths), тепловые карты (heatmaps), карты плотности точек (dot density maps), пространственные графы, диаграммы Вороного (Voronoi diagram). Geoplotlib требует наличия специального объектно-ориентированного API – Pyglet. https://github.com/andrea-cuttone/geoplotlib
Pygal – библиотека с простым интерфейсом и небольшой интерактивностью. Получаемые с ее помощью карты мира можно просматривать в браузере как HTML-страницу либо скачать в формате SVG, а для PNG понадобятся дополнительные пакеты. https://github.com/Kozea/pygal
OSMnx – библиотека, которая позволяет детализировать местность вплоть до улиц, загружать пространственные модели и геометрию, проектировать, визуализировать и анализировать реальные уличные сети из API Open Street Map. Open Street Map — это свободный и бесплатный проект для работы с подробными географическими картами мира. Благодаря этому в OSMnx можно загружать и моделировать пешеходные, автомобильные или велосипедные городские сети, показывать время в пути, воспроизводить достопримечательности, контуры зданий, а также данные о рельефе местности. https://github.com/gboeing/osmnx
Bokeh, которая позволяет не только отрисовывать статические карты, но и создавать интерактивные с возможностью перемещения и изменения масштаба. Bokeh предоставляет вышеупомянутый API Open Street Map и Google Map, для работы с которым понадобится Google API Key. https://github.com/bokeh/bokeh
• Наконец, Plotly, которая считается самой широкой интерактивной Python-библиотекой. Для работы с картами в ней используется MapBox, где есть ограничения по бесплатному пользованию, в зависимости от количества загрузок карт. Еще в Plotly есть фоновые и тепловые карты, а также карты плотности точек. На самих картах можно строить графы, наносить линии, прямоугольники и пузыри. Как и Bokeh, Plotly для чтения геокоординат использует GeoJSON. https://plotly.com/python/maps/
​​AtsPy - Автоматизация предсказания временных рядов

Бибилиотека AtsPy позволяет легко создавать модели для прогнозирования временных рядов. В библиотеки реализованы следующие модели:
ARIMA - Automated ARIMA Modelling
Prophet - Modeling Multiple Seasonality With Linear or Non-linear Growth
HWAAS - Exponential Smoothing With Additive Trend and Additive Seasonality
HWAMS - Exponential Smoothing with Additive Trend and Multiplicative Seasonality
NBEATS - Neural basis expansion analysis (now fixed at 20 Epochs)
Gluonts - RNN-based Model (now fixed at 20 Epochs)
TATS - Seasonal and Trend no Box Cox
TBAT - Trend and Box Cox
TBATS1 - Trend, Seasonal (one), and Box Cox
TBATP1 - TBATS1 but Seasonal Inference is Hardcoded by Periodicity
TBATS2 - TBATS1 With Two Seasonal Periods

Установка:
pip install atspy

Применение:
from atspy import AutomatedModel
model_list = ["HWAMS","HWAAS","TBAT"]
am = AutomatedModel(df = df , model_list=model_list,forecast_len=20)
all_ensemble_in, all_ensemble_out, all_performance = am.ensemble(forecast_in, forecast_out)
all_ensemble_in[["Target","ensemble_lgb__X__HWAMS","HWAMS","HWAAS"]].plot()
all_ensemble_out[["ensemble_lgb__X__HWAMS","HWAMS","HWAAS"]].plot()
Forwarded from Этюды для программистов на Python (Дима Федоров)
По многочисленным просьбам подготовил переводы про визуализацию и обработку данных для ML 🐍

👉 Эффективное использование Matplotlib

👉 Руководство по кодированию категориальных значений в Python

Приятного чтения! 🐼

PS. остальные переводы и кейсы по ссылке ⚡️
Forwarded from Этюды для программистов на Python (Дима Федоров)
По многочисленным просьбам подготовил переводы про визуализацию и обработку данных для ML 🐍

👉 Эффективное использование Matplotlib

👉 Руководство по кодированию категориальных значений в Python

Приятного чтения! 🐼

PS. остальные переводы и кейсы по ссылке ⚡️
📈 Обучение Data Science: какие знания по математике нужны специалисту по анализу данных?

Рассказываем про ключевые математические знания для Data Scientist, а также про книги, курсы и видеолекции в помощь обучающимся. Материал будет полезен не только осваивающим профессию с нуля новичкам, опытные специалисты также могут почерпнуть в нем что-то интересное.

https://proglib.io/sh/RKNBTerypS
📊 ТОП-10 необходимых для специалиста по Big Data навыков

Рассказываем о необходимом наборе технических и карьерных навыков для специалиста по Big Data.

https://proglib.io/sh/wQnkljYm9G
Forwarded from Sberloga (🇻 🇱 🇦 🇩)
Ребята,

Позавчера случилось знаменательное событие - открытой библиотеке для обработки естественного языка DeepPavlov, 5 февраля исполнилось 3 года!
Было много интересных докладов https://deeppavlov.ai/events/3year
Трансляцию можно посмотреть тут https://youtu.be/LkvioWrgo5E
Ребята обещали в течении недели всю ее нарезать и выложить на свой канал 👍
Но а я, как человек который в очередной раз все пропустил, начну смотреть в "режиссерской" версии 😅

@sberloga
Forwarded from Big Data Science [RU]
🌷Третий – не лишний: к LightGBM и XGBoost присоединился еще один ML-алгоритм вероятностного прогнозирования - Natural Gradient Boosting (NGBoost). Выпущенный в 2019 году, NGBoost состоит из трех абстрактных модулей: базового обучающегося, параметрического распределения вероятностей и оценочных правил. Все три компонента рассматриваются как гиперпараметры, выбранные заранее перед обучением. NGBoost упрощает вероятностную регрессию с помощью гибких древовидных моделей и позволяет проводить вероятностную классификацию, возвращая вероятности по каждому классу. Например, логистическая регрессия возвращает вероятности классов в качестве выходных данных. Эксперименты с несколькими наборами данных регрессии доказали, что NGBoost обеспечивает конкурентоспособные прогностические характеристики как оценок неопределенности, так и традиционных показателей. С другой стороны, его время вычисления намного больше, чем у других двух алгоритмов, и нет некоторых полезных опций, например, отсутствует ранний останов, отображение промежуточных результатов, гибкость выбора базового обучающегося параметра, установка случайного начального состояния. Несмотря на то, что пока можно работать лишь с деревом решений и регрессией Риджа, этот ML-алгоритм вероятностного прогнозирования показывает весьма достойные результаты в сравнении с другими популярными градиентными методами.
Подробнее о том, как работает NGBoost, читайте здесь:
http://www.51anomaly.org/pdf/NGBOOST.pdf
https://medium.com/@ODSC/using-the-ngboost-algorithm-8d337b753c58
https://towardsdatascience.com/ngboost-explained-comparison-to-lightgbm-and-xgboost-fda510903e53
https://www.groundai.com/project/ngboost-natural-gradient-boosting-for-probabilistic-prediction/1
Forwarded from Start Career in DS
Мне тут недавно пришлось очень плотно поработать с временными рядами, нашел супер-крутую библиотеку от Facebook для этого:
https://facebook.github.io/prophet/

Пишут, что хорошо работает с рядами, в которых выражена сезонность. Имеет очень удобный интерфейс и позволяет находу отрисовывать красивые графики
Forwarded from Start Career in DS
Каждый уважающий себя DS гоняет xgboost :)
Но далеко не каждый понимает что означают те или иные его параметры. Вот статья, в которой рассказывают про смысл большинства из них:
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
#полезно #пост_от_подписчика

Мне тут подписчик @Aykhan_txt прислал крутой пост

Год Работы на Google Colab

Google Colab — это бесплатный облачный сервис на основе Jupyter Notebook, который дает возможность работать на GPU или TPU. Здесь я расскажу об основных минусах и как я с ними боролся.

Поговорим об ограничениях. Вместе с ними буду предлагать пути решения:

1) Время работы сессии только до 12 часов. После чего, нужно будет перезапускать блокнот. Все данные, которые были на диске благополучно исчезнут.
Поэтому, предлагаю вам подключить к Colab еще и Google Drive и сохранять все логи и веса моделей туда. После отключения блокнота все важные данные у вас будут на вашем Google Drive.

2) При длительном бездействии (30-60 минут) следует отключение блокнота.
Решение этой проблемы можно найти в приложенном jupyter notebook

3) При постоянном использовании (примерно 3-4 дня подряд) доступ к быстрым видеокартам закрывается и для ваших сессий будут выделены более медленные графические процессоры. В некоторых случаях может доступ к GPU закрыт полностью. Для восстановления прежних мощностей придется подождать до 2 суток.
Для себя я нашел решение в переменном использовании Kaggle блокнотов и Colab. Kaggle имеет те же самые параметры и дает возможность использовать сервис 30 часов в неделе (иногда даже больше).

4) Ограниченный объем памяти 60-80 гб.
Решения для этой проблемы я не нашел в рамках самого Colab и я просто пользовался Kaggle, так как там проще подключать датасеты.

5) Загрузка данных с локального компьютера на диск очень медленная.
Лучше всего грузить данные с интернета через команды !wget, !git clone.

6) Очень медленная работа с Google Drive. Если Ваш датасет находится на Гугл диске, знайте, данные оттуда грузятся очень медленно. Лучше все грузить на диск Colab или же сразу в оперативную память

Полезный ноутбук: https://colab.research.google.com/drive/1-6Q3YjFdeLfqSWXuVvdLsl0pUc1nT4Gi#scrollTo=h9qy2qPehifB
Forwarded from Хроники ботки (Aleksei Shestov 𓆏)
AutoML это алгоритмы, которые подбирают алгоритм, параметры и их комбинации специально для конкретного датасета. То есть такая замена дата саентиста. Сбербанк выпустил свой опенсорсный автомл фреймворк на питоне, призываю все пользоваться, шарить и распространять :) Александр Рыжков, Дмитрий Симаков и их коллеги разрабатывают автомл в Сбере, они уже делали доклад в декабре
https://www.youtube.com/watch?v=ci8uqgWFJGg&list=PLYeFZ_T6PUrILcK5rKHlb9PdBp-ySitUN,
а сейчас можно посмотреть участие автомл в каггл соревнование и его выигрыш относительно других автомл
https://www.kaggle.com/alexryzhkov/tps-april-21-lightautoml-starter (не жалейте ваши апвоуты этому ноутбуку на каггле :)

Проект в опенсорсе - https://github.com/sberbank-ai-lab/LightAutoML
И бенчмарки: https://github.com/sberbank-ai-lab/automlbenchmark/tree/lightautoml
Forwarded from TechSparks
Во-первых, хорошие популярные материалы про машинное обучение — увы, редкость. Тем более — оригинальные отечественные.
Во-вторых, я очень люблю все материалы, к которым имеет отношение Саша Крайнов: не просто отличный эксперт, но и талантливый фантазёр и отличный рассказчик.
Вот вам прекрасный ролик с достойным названием «Гадание на датасетах»;)

https://youtu.be/zUlm0MKquKo