Машинное обучение digest – Telegram
Машинное обучение digest
40 subscribers
1.3K photos
181 videos
652 links
Download Telegram
📘 Machine Learning Q and AI — новая книга от мастодонта ML Себастьяна Рашки теперь в открытом доступе!

👨‍🔬 Автор — core‑разработчик Scikit‑learn, преподаватель, автор культовых пособий по машинному обучению.

Что внутри:
• 30 глав по нейросетям, компьютерному зрению, LLM, оценке и деплою моделей
• Чёткая структура: теория → примеры → упражнения
• Много практики, схем, визуализаций и Python‑кода

Это не просто справочник, а полный курс по Deep Learning, от основ до продвинутых тем.

📖 Читать онлайн

@data_analysis_ml
✔️Sakana AI запускает новый алгоритм AB-MCTS

Sakana AI представила AB-MCTS (Adaptive Branching Monte Carlo Tree Search) — алгоритм, который объединяет несколько передовых ИИ-моделей (o4-mini, Gemini 2.5 Pro, DeepSeek-R1-0528) в единую систему коллективного поиска решений.

Преимущества AB-MCTS:
— Коллективный интеллект: каждая модель вносит свои сильные стороны и компенсирует слабые.
— Адаптивный поиск: строится дерево возможных стратегий, и выбор ответвлений происходит на основе успешности прошлых итераций.
— Существенный прирост качества: на бенчмарке ARC-AGI-2 комбинация моделей значительно превосходит каждую из них по отдельности.

Полезные ссылки:
Блог об AB-MCTS: https://sakana.ai/ab-mcts
Статья на arXiv: https://arxiv.org/abs/2503.04412
Исходник TreeQuest: https://github.com/SakanaAI/treequest
Эксперименты ARC-AGI: https://github.com/SakanaAI/ab-mcts-arc2

@vistehno
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📌 ICONIQ: Плейбук архитектора ИИ-систем 2025.
 
Iconiq Capital опросила 300 руководителей ИИ-стартапов с доходом от $10 млн. до $1 млрд. о том, как эти стартапы используют ИИ и собрала результаты в отчет "ICONIQ AI Builder’s Playbook 2025"

Iconiq Capital - американская компания по управлению инвестициями, основанная в 2011 году. Функционирует как гибридный семейный офис и имеет тесные связи с компанией Марка Цукерберга. Компания предоставляет услуги по инвестиционному менеджменту, частному капиталу, венчурным инвестициям, управлению недвижимостью и филантропии для состоятельных семей и организаций.


▶️Очень кратко:

Эра экспериментальных ИИ-демо закончилась. Сейчас компании массово переходят к боевому использованию генеративных моделей - и тут уже не про «вау», а про ROI, стоимость инференса и объяснимость.


🟡AI-native vs AI-enabled

Компании, с нативными ИИ-продуктами, сильно опережают тех, кто "добавил ИИ". Почти половина стартапов нативных ИИ-продуктов уже достигла масштабирования (47% против 13% у ретрофитеров).

В продуктовом портфеле такой типовой компании в среднем 2,8 модели и они активно идут по пути агентных сценариев, причем многие строят архитектуру с возможностью быстрого свапа моделей.


🟡Ценообразование и монетизация.

ИИ ломает старые цены и бизнес-модели. 38% компаний используют гибридное ценообразование (подписка + плата за использование), ещё 19% — только за использование а 6% уже экспериментируют с outcome-based моделями.

Пока 40% включают ИИ в премиум-пакет, но 37% планируют пересмотреть подход, учитывая реальные метрики использования и отдачу.

🟡Команда и расходы. 

ИИ перестал быть задачей «R&D-уголка». В быстрорастущих компаниях до 37% инженеров работают над ИИ, а AI/ML-инженеров нанимают в среднем за 70+ дней. И это большая проблема.

ИИ забирает до 20% R&D-бюджета, причем по мере роста проекта расходы смещаются с найма в сторону инференса и инфраструктуры.

 
🟡Инструменты и инфраструктура. 

68% компаний используют только облако, ещё 64% сидят на внешних API. OpenAI/GPT - лидер (81%), но растет доля мульти-модельных подходов (Claude, Gemini, Mistral и др.).

NVIDIA по-прежнему доминирует в инференсе: TensorRT и Triton используют 60% команд, но и ONNX Runtime (18%) с TorchServe (15%) укрепляют позиции.

Из инструментов для оркестрации лидируют LangChain и Hugging Face, а для мониторинга — Datadog и LangSmith (~17%). MLOps по-прежнему на MLflow (36%) и Weights & Biases (20%).


🟡Что тормозит развитие. 

Самое сложное в развертывании продуктов оказалось не в коде, а в доверии и эффективности:

42% компаний говорят о проблемах доверия и объяснимости, 39% — не могут показать ROI, 38% — борются с галлюцинациями, а 32% — с высокой стоимостью инференса, а доступ к GPU — проблема лишь для 5%.

Главный вывод: чтобы внедрить ИИ, одной модели не достаточно, еще нужно обосновать ее бизнес-ценность и держать под контролем поведение.
 
🟡ИИ внутри стартапов.

77% команд используют ИИ для помощи в разработке (GitHub Copilot почти у всех), 65% — для генерации контента, 57% — для поиска знаний.
Те, у кого ИИ активно используется получают 15–30% прироста эффективности. Самые распространенные юзкейсы: кодинг, аналитика, поиск по внутренней документации.


Самое неожиданное
Несмотря на популярность OpenAI, стоимость API и непредсказуемость инференса — головная боль даже у тех, кто платит миллионы в месяц.


🔜 Ознакомиться с полным отчетом

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧬 Chai‑2 — AI-модель, которая за 2 недели проектирует реальные антитела с нуля

Модель Chai‑2 совершает прорыв в молекулярной биоинженерии:
она создаёт антитела и минибелки без обучающей выборки, выдавая в 100+ раз больше "успешных" молекул, чем любые предыдущие методы.

Главное:
- Успешность: 16% hit-rate по 52 новым белковым мишеням — это *на два порядка* выше прежних моделей.
- Скорость: от модели до wet-lab результата — менее 2 недель.
- Zero-shot: Chai‑2 работает *без существующих антител*, используя только 3–4 аминокислоты мишени.
- Точность: генерирует молекулы с picomolar аффинностью к сложнейшим целям (например TNFα).
- 🧠 Контролируемость: можно указывать формат (VHH/scFv), эпитоп, кросс-реактивность (human/cyno).

Почему это важно:
Chai‑2 работает *как языковая модель для биомолекул*, генерируя FASTA*-последовательности белков, которые реально работают в лаборатории. Это меняет саму парадигму: не перебор миллионов вариантов, а целенаправленный дизайн.

FASTA — это простой текстовый формат для представления нуклеотидных (ДНК, РНК) или аминокислотных (белковых) последовательностей.


📄 Отчёт: chaiassets.com/chai-2/paper/technical_report.pdf

@ai_machinelearning_big_data


#ml #biotech #ai
🧬 Chai‑2: новая эра в генеративном дизайне антител с помощью ИИ

Несмотря на прогресс в проектировании белков, создать рабочие антитела с нуля до сих пор было почти невозможно.

Но новая модель Chai‑2 менянт правила игры.

Chai‑2 — это мультимодальная генеративная модель, которая впервые позволяет проектировать функциональные антитела de novo ( в биологии и биоинформатике означает создание чего-либо с полного нуля, без использования готовых шаблонов или существующих структур.) с высокой точностью.

📊 Результаты:
• 16% антител показали нужную биологическую активность при генерации с нуля — это в 100+ раз лучше, чем у предыдущих методов (аньше hit-rate был <0.1%)
• Создано ≤20 антител для 52 уникальных целей (это разные белки, молекулы или структуры, к которым ИИ должен был спроектировать подходящие антитела)
• Найдены активные антитела для 50% целей — всего за один цикл лабораторного тестирования
• Из 100 спроектированных минибелков 68 реально работали, как задумано, в лабораторных тестах.

🧪 ИИ придумывает молекулу → учёные её синтезируют → тестируют в лаборатории — и всё это занимает меньше двух недель. Раньше на такой цикл уходили месяцы или даже годы.

📦 Почему это важно:
• Такой метод ускоряет разработку антител и препаратов
• Убирает необходимость в дорогостоящем скрининге миллионов вариантов
• Даёт возможность атомарного дизайна молекул под конкретные мишени

📄 Полный отчет: chaiassets.com/chai-2/paper/technical_report.pdf

@ai_machinelearning_big_data


#ml #biotech #ai
🍏 Apple выложила исходники FlexTok — нового токенизатора изображений с гибкой длиной

FlexTok — это токенизатор, который представляет изображение как последовательность токенов переменной длины, от самых грубых до самых детализированных.

В отличие от большинства image tokenizer'ов (где всегда фиксированное число токенов и они жёстко локализованы по патчам), здесь подход коarse-to-fine — как в PCA:
- первый токен даёт максимально сжатое представление,
- второй — добавляет детали,
- третий — ещё больше и т.д.

Такой порядок оказывается семантически разумным, хотя обучение шло без языевой подсказки. Получается структура, которую удобно использовать в генерации и понимании изображений.

Всё сделано без магии:
- используется nested dropout на токенах во время обучения,
- архитектура простая, основана на известных компонентах,
- токены можно интерпретировать по уровню детализации.

📎 Исходники: https://github.com/apple/ml-flextok
🖼️ Демка: https://huggingface.co/spaces/EPFL-VILAB/FlexTok
📊 Визуализации: https://flextok.epfl.ch
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 FlexTok: адаптивная 1D-токенизация изображений от Apple.

FlexTok - метод токенизации изображений, который преобразует 2D-изображения в упорядоченные 1D-последовательности переменной длины.

Его цель - сократить объем данных, необходимых для обучения генеративных моделей, и при этом оставить достаточную информацию для качественной реконструкции и генерации.

В отличие от традиционных подходов, где число токенов фиксировано и зависит только от размера изображения, FlexTok подстраивается под сложность контента: простейшая сцена может кодироваться несколькими токенами, а сложная - десятками и сотнями .

FlexTok, это по сути, пайплайн из 3 компонентов: ViT‑энкодер, квантование регистров и маскирование внимания:

ViT‑энкодер с набором «регистровых» токенов читает латентные представления VAE‑GAN и конденсирует их в 1D-последовательность до 256 регистров .

Затем, с помощью FSQ‑квантования, каждый регистр дискретизируется в код из заранее определенного словаря размером ~64 000.
На этом этапе применяется "nested dropout": во время обучения случайно обрезаются последние токены, чтобы модель научилась упорядочивать информацию от грубых форм к деталям.

Параллельно применяется авторегрессионная маска внимания: каждый токен в цепочке видит только те, что были до него, и не знает о тех, что идут после. Это заставляет модель генерировать изображения шаг за шагом, от первого токена к последнему, и упрощает ей задачу прогнозирования следующих элементов.

Декодер в FlexTok - это модель rectified flow, которая на вход берет укороченные токены и слегка зашумленные латенты VAE и учится предсказывать тот шум, который нужно убрать, чтобы вернуть исходное представление.

Чтобы обучение шло быстрее и давало более точные результаты, добавляют REPA‑Loss: он сравнивает промежуточные признаки с векторами из DINOv2‑L. Благодаря этому даже при очень жесткой компрессии (от 1 до 256 токенов), FlexTok успешно восстанавливает детали изображения.

FlexTok легко встраивается в текстово‑ориентированные модели и может улучшить соответствие изображения описанию, даже если число токенов меняется. К тому же его адаптивная токенизация применима не только к картинкам, но и к аудио или видео.

▶️Набор токенизаторов:

🟢Flextok_d12_d12_in1k - 12\12 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d18_in1k - 18\18 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d28_in1k - 18\28 слоев энкодер-декодер, датасет IN1K;
🟢Flextok_d18_d28_dfm - 18\28 слоев энкодер-декодер, датасет DFN.

▶️ VAE:

🟠Flextok_vae_c4 - 4 каналов латента, коэффициент понижающей дискретизации 8;
🟠Flextok_vae_c8 - 8 каналов латента, коэффициент понижающей дискретизации 8;
🟠Flextok_vae_c16 - 16 каналов латента, коэффициент понижающей дискретизации 8.


🟡Страница проекта
🟡Набор на HF
🟡Arxiv
🟡Demo
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Tokenizer #Flextok #Apple
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 Теперь можно вычислять LLM, которые «накрутили» баллы на бенчмарказ по математике, но не умеют больше ничего.

В свежем исследовании *“Does Math Reasoning Improve General LLM Capabilities?”* показано, что модели, обученные на математике с помощью SFT, часто не улучшаются вне математики — а иногда даже деградируют.

📊 Что выяснили:
SFT на математике → ухудшение на нематематических задачах
RL на математике → перенос улучшений в другие домены
• SFT вызывает сильное смещение представлений и токен-дистрибуций
• RL наоборот — сохраняет топологию модели и двигает только логические оси

🧪 Авторами разработан новый инструмент — Transferability Index:
Это простое соотношение между улучшением на математике и изменением на сбалансированном наборе задач. Помогает понять:
✔️ где модель реально умнее
а где — просто бенчмарк‑максинг

📌 Вывод: RL-постобучение лучше предотвращает «забвение» и делает LLM более универсальными.
SFT — может казаться эффективным, но часто ухудшает общие способности модели.

📌 Подробнее