Машинное обучение digest – Telegram
Машинное обучение digest
40 subscribers
1.3K photos
181 videos
652 links
Download Telegram
🚀 Google выпустила EmbeddingGemma: лёгкую open-source модель для текстовых эмбеддингов.

Модельку можно запускать прямо на телефоне или ноутбуке, без интернета и с сохранением приватности.

EmbeddingGemma - новый лидер среди открытых многоязычных моделей <500M на MTEB

🟢Что внутри:
308M параметров, но по качеству обгоняет все модели до 500M (по MTEB)
• Работает очень быстро: менее 15 мс на EdgeTPU (256 токенов)
• Понимает 100+ языков
• Размер эмбеддингов можно уменьшать (768 → 128) без потери качества
• Контекст до 2000 токенов
• Уже доступна в Sentence-Transformers, LangChain, llama.cpp, transformers.js, Weaviate и др.

🟠Blog: https://developers.googleblog.com/en/introducing-embeddinggemma/
🟠Models: https://huggingface.co/collections/google/embeddinggemma-68b9ae3a72a82f0562a80dc4

@ai_machinelearning_big_data

#AI #Google #Gemma #EmbeddingGemma #ML #DeepLearning #LLM #NLP
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 InfoSeek: синтез данных для deep‑research с формализацией HCSP.

BAAI представила InfoSeek — открытую методику синтеза данных и учебный контур для глубоких исследований. Задачи такого класса выходят за рамки обычного извлечения фактов: модель должна раскладывать вопрос на подзадачи, координировать многошаговое рассуждение и проверять ответы по источникам.

Эти задачи формализуются как HCSP — иерархические задачи удовлетворения ограничений, решение которых возникает только при последовательном сужении кандидатов на нескольких уровнях, где каждый внутренний узел сам является подзадачей, а зависимость между узлами образует дерево исследования.


Базовая идея проста: данные строятся вокруг древа исследования. Вершины - сущности или атомарные факты, ребра - проверяемые отношения из Википедии и открытых страниц. Алгоритм синтеза явно управляет структурой, чтобы исключить недоопределенность или ранние "короткие замыкания".

В HCSP ответ формально равен пересечению множеств, заданных текущими ограничениями и рекурсивными подвопросами; в терминах дерева корень — финальный ответ. Такой подход не только задаёт глубину и ширину рассуждения, но и делает каждый промежуточный шаг проверяемым по конкретным утверждениям.

🟡Синтез выполняет связка из 2 агентов.

Планировщик контролирует глобальную сложность, выбирая цель и тип расширения, а Браузер добывает факты и ссылки из страницы сущности. 4 операции покрывают весь жизненный цикл:

🟢Инициализация из "якоря";

🟢"Размытие родителя" - добавление нескольких независимых условий, которые в совокупности определяют уникальный ответ без включений между кандидатами;

🟢Вертикальное углубление по гиперссылке для увеличения высоты дерева;

🟢Генерация текста вопроса лишь после того, как каждый узел имеет достаточный набор проверяемых ограничений и достигнуты заданные метрики сложности.

Качество контролируется по 2 осям: сложность и проверяемость. Сначала вопросы прогоняются "в лоб": если мощная базовая модель отвечает правильно без поиска, образец исключается, так было отсеяно около 2%. Затем проверяется решаемость на фиксированном наборе страниц с примесями-дистракторами и все двусмысленное удаляется.

Итог: датасет с 50 тыс. пар вопрос–ответ и 16,5 тыс. траекторий размышлений с метками извлечения.

🟡Эксперименты.

Тесты показали, что InfoSeek переносится за пределы домашнего домена. На классических наборах для извлечения фактов и мульти‑hop вопросов компактная модель InfoSeeker‑3B опережает типовые RAG и агентные пайплайны.

На BrowseComp‑Plus с фиксированным корпусом 100K страниц и BM25 точность достигает 16,5% при среднем 8,24 обращения к поиску, что выше, чем у Gemini 2.5 Flash, Sonnet 4 и GPT‑4.1 и значительно выше Qwen3‑32B и Search‑R1‑32B.

Замена обучающего набора NQ+HQA на InfoSeek поднимает точность с 3,0% до 16,5% и делает запросы осмысленно более частыми.

▶️ Из готового у проекта есть датасет, техотчет, конструктор древа данных и код для SFT- трейна. В планах - код RL и публикация весов InfoSeeker‑3B.


📌Лицензирование: Apache 2.0 License.


🟡Датасет
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #DeepResearch #Dataset #InfoSeek
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Команда Qwen представила Qwen3-Max-Preview (Instruct) — свою крупнейшую модель на сегодняшний день, с более чем 1 триллионом параметров

По бенчмаркам Qwen3-Max-Preview опережает предыдущий флагман Qwen3-235B-A22B-2507.

Внутренние тесты и первые отзывы пользователей говорят о том, что модель стала сильнее в диалогах, агентных задачах, следовании инструкциям и обладает более широкими знаниями.

Qwen обещают очень скоро выпустить ещё что-то интересное.

Qwen3-Max-Preview уже доступна в Qwen Chat и через Alibaba Cloud API.

🟢Qwen Chat: https://chat.qwen.ai
🟢Alibaba Cloud API: https://modelstudio.console.alibabacloud.com/?tab=doc#/doc/?type=model&url=2840914_2&modelId=qwen3-max-preview

@ai_machinelearning_big_data


#AI #Qwen3 #LLM #AlibabaCloud #QwenChat
Please open Telegram to view this post
VIEW IN TELEGRAM
📌Почему языковые модели галлюцинируют.

OpenAI опубликовали исследование о причинах галлюцинации LLM.

Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.

Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.

🟡Все начинается еще на претрейне.

Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.

В работе вводится понятие singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле.

Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.

🟡Эксперименты это подтверждают.

Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты: 03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью).

В другом тесте, где нужно было сосчитать количество букв D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7.

При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний. Кто бы сомневался.

🟡Почему галлюцинации не исчезают после пост-тренинга и RLHF?

Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.

Эту гипотезу подтвердили анализом популярных оценочных наборов.

В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.

🟡Что делать инженерам.

OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.

Еще рекомендуют включают мониторинг singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.

🔜 Читать статью полностью


@ai_machinelearning_big_data

#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
📌Почему языковые модели галлюцинируют.

OpenAI опубликовали исследование о причинах галлюцинации LLM.

Галлюцинации - это не мистический сбой в сознании ИИ, а вполне предсказуемый побочный эффект его обучения.

Представьте, что перед моделью стоит задача бинарной классификации - определить, является ли предложенное утверждение корректным или нет. Математическая выкладка в исследовании проста: уровень ошибок генерации как минимум в 2 раза превышает уровень ошибок классификации. Если модель не способна надежно отличить факт от вымысла, она неизбежно будет этот вымысел генерировать.

🟡Все начинается еще на претрейне.

Даже на идеально чистых данных статистические цели обучения подталкивают модель к генерации ошибок. Особенно это касается фактов, которые редко встречаются в обучающей выборке.

В работе вводится понятие singleton rate — доля фактов, которые появились в данных лишь один раз. Теоретический расклад показывает, что уровень галлюцинаций модели будет как минимум равен этой доле.

Проще говоря, если 20% фактов о днях рождения в датасете встретились единожды, модель будет выдумывать дни рождения как минимум в 20% случаев.

🟡Эксперименты это подтверждают.

Модель DeepSeek-V3, на просьбу назвать день рождения одного из авторов статьи, трижды выдала неверные даты: 03-07, 15-06 и 01-01. Ни одна из них не была даже близка к правильной (осенью).

В другом тесте, где нужно было сосчитать количество букв D в слове DEEPSEEK, та же DeepSeek-V3 выдавала 2 или 3, а модели компании Марка Цукерберга и Claude 3.7 Sonnet доходили до 6 и 7.

При этом базовые модели после претрейна часто показывают отличную калибровку. Например, у предобученной GPT-4 ожидаемая ошибка калибровки составляла всего 0.007, что говорит о высокой статистической адекватности ее предсказаний. Кто бы сомневался.

🟡Почему галлюцинации не исчезают после пост-тренинга и RLHF?

Ответ на этот вопрос - в системе оценки. Большинство современных бенчмарков поощряют угадывание. Модели, по сути, постоянно находятся в режиме сдачи экзамена, где за правильный ответ дают 1 балл, а за пустой бланк или ответ я не знаю - 0. В такой системе оптимальная стратегия при неуверенности - только угадать. Любой шанс на правильный ответ лучше, чем гарантированный ноль.

Эту гипотезу подтвердили анализом популярных оценочных наборов.

В GPQA, MMLU-Pro, Omni-MATH, SWE-bench и HLE используется строго бинарная система оценки (правильно/неправильно). Возможности получить частичный балл за честное признание в незнании там просто нет. Из 10 рассмотренных в исследовании популярных бенчмарков только один, WildBench, присуждает частичные баллы за ответы формата я не знаю. Остальные же фактически наказывают модель за отказ галлюцинировать, создавая эпидемию штрафов за неуверенность и поощряя ее выдавать правдоподобную ложь.

🟡Что делать инженерам.

OpenAI предлагает встраивать явные целевые уровни уверенности в рубрики, вводить поведенческую калибровку и оценивать модели по секциям с разными порогами уверенности.

Еще рекомендуют включают мониторинг singleton-rate на корпусе, измерение вероятности важных ответов, комбинирование RAG с верификацией фактов и изменение лидербордов чтобы ответы я не знаю не штрафовались автоматически.

🔜 Читать статью полностью
🔜 Смотреть видео разбор

#AI #ML #LLM #Research #OpenAI
Please open Telegram to view this post
VIEW IN TELEGRAM
⚡️ REFRAG: новое поколение RAG

REFRAG ускоряет работу Retrieval-Augmented Generation, сжимая контекст в chunk embeddings, сохраняя качество ответов.

📌 Результаты:

- До 30.85× быстрее первый токен

- До 16× длиннее эффективный контекст без потери точности

🔍 В чём идея:

Обычные RAG-промпты вставляют кучу текстов, половина из которых не нужна → модель тратит вычисления впустую.

REFRAG заменяет токены этих текстов кэшированными эмбеддингами, подгоняет их под размер декодера и подаёт вместе с вопросом.

Последовательность короче → внимание масштабируется по чанкам, а не по токенам → меньше памяти уходит на KV-кэш.

🎯 Как работает:

- Большинство чанков остаются сжатыми.

- Специальная политика выбирает, какие именно разжать обратно в токены, если важна точная формулировка.

- Обучение идёт в 2 шага: сначала модель учится восстанавливать токены из эмбеддингов, потом продолжается предобучение с задачей прогнозирования следующего абзаца (постепенно увеличивая размер чанков).

- Политика сжатия/разжатия тренируется через reinforcement learning, используя лосс предсказания слова как сигнал.

📄 Paper: arxiv.org/abs/2509.01092
🔥 OpenAI объявила о перестройке команд

➡️ Команда Model Behavior (14 человек), которая занималась настройкой “личности” ChatGPT, снижением угодничества и проработкой политической предвзятости, теперь войдёт в состав более широкой Post-Training org.

👩‍💻 Её основатель, Джоанн Джанг, запускает новый экспериментальный проект OAI Labs, где будут тестировать свежие форматы взаимодействия человека и ИИ.

Перемены показывают: управление личностью модели становится ключевым направлением разработки. Это ответ OpenAI на жалобы пользователей на “холодные” ответы GPT-5 и продолжающиеся дискуссии о безопасности чатботов.
Media is too big
VIEW IN TELEGRAM
✔️ Архитектурный сдвиг в больших языковых моделях: линейное внимание выходит на промышленные рельсы.

Эксперт Tiezhen WANG в своем годовом прогнозе отмечает, что RL и системы памяти получают широкое распространение, но главное — нас ждет фундаментальное изменение архитектуры ИИ. Ключевой инсайд: следующее поколение моделей, такое как Qwen3-next, активно экспериментирует с линейным вниманием (linear attention). Объем исследований в этой области достиг критической массы, и теперь эти наработки находятся на пороге внедрения в mainstream-модели промышленного масштаба. Это прорыв в эффективности: линейное внимание потенциально позволяет радикально снизить вычислительную сложность и потребление памяти при работе с длинными контекстами, что открывает дорогу для более дешевых и мощных моделей. X.com

✔️ ElevenLabs анонсировала фреймворк для автоматического тестирования ИИ-агентов.

Компания представила комплексное решение для автоматизации тестирования голосовых и текстовых агентов. Фреймворк позволяет уйти от ручных проверок через звонки к быстрому и повторяемому процессу, что значительно ускоряет итерации разработки. Система включает два ключевых подхода:
· LLM-оценка — проверяет качество и уместность ответов агента по заданным критериям (эмпатия, точность, tone of voice).
· Тестирование вызова инструментов — валидирует, что агент корректно использует API, передает правильные параметры и следует критически важной логике (например, трансфер в экстренные службы).

Главная фича — возможность одним кликом создавать тест-кейсы из реальных диалогов, моментально превращая провалы агента в production в тесты для предотвращения регрессий. Фреймворк интегрирован в CI/CD через CLI. elevenlabs.io

✔️Microsoft делает беспрецедентный шаг для снижения зависимости от OpenAI

Несмотря на инвестиции более $13 млрд в OpenAI, компания теперь диверсифицируется — подключая технологии Anthropic в Office 365.Microsoft начнёт использовать модели Anthropic (например, Claude Sonnet 4) в таких приложениях, как Word, Excel, Outlook и PowerPoint, наряду с OpenAI и собственными AI-моделями.
Причина — внутренние тесты показали, что Claude превосходит OpenAI в задачах вроде автоматизации финансов в Excel и генерации более эстетичных презентаций в PowerPoint. Это явная стратегия снижения риска единого поставщика и шаг к многосторонней AI-экосистеме.
Reuters

✔️ Sakana AI открыла найм в финансовый сектор.

Японский ИИ-стартап, основанный экс-инженерами Google, ищет Technical Program Manager для работы с крупными предприятиями и финтехом. Кандидат будет отвечать за доставку комплексных проектов — от планирования до внедрения — и совместную разработку ИИ-решений с клиентами из финансовой индустрии. Это сигнал о стратегии Sakana: вместо массового продукта они фокусируются на глубокой B2B-интеграции в высокомаржинальных вертикалях. Новость указывает на растущий спрос со стороны крупных корпораций на кастомные ИИ-решения под, а не на использование готовых API. Sakana.ai

✔️Apple расширяет функции AirPods

Синхронный перевод теперь работает не только на новых моделях — поддержку получили и AirPods Pro 2, и AirPods 4.
Условие: нужны iPhone 15 Pro или новее с iOS 26.
На старте доступны 5 языков: английский, французский, немецкий, португальский и испанский.

✔️ Claude научился создавать и редактировать файлы: Excel, PowerPoint, Docs и PDF.

Anthropic представила бета-доступ к функции создания файлов прямо в чате. ИИ теперь может генерировать полноценные, готовые к использованию документы: финансовые модели с формулами, дашборды в таблицах, презентации на основе отчетов и многое другое. Для этого Claude получает доступ к изолированной компьютерной среде («Claude’s computer»), где выполняет код и запускает программы для обработки данных и сборки финальных файлов. Это не просто текстовый вывод, а работа в полноценных приложениях. Функция доступна для корпоративных планов, для Pro — появится в ближайшие недели. Anthropic прямо предупреждает о рисках конфиденциальности, так как процесс требует доступа в интернет. anthropic.com

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🤖 Прорыв в разработке наноботов

Учёные из Penn State сделали важный шаг к созданию настоящих наноботов.

🔬 С помощью нового микро-флюидного устройства они создали крошечные частицы, которые могут обмениваться сигналами и действовать вместе - как муравьи, оставляющие следы для других.
- Одна группа частиц двигалась по химическому градиенту и оставляла «след».
- Другая группа улавливала этот след и шла за ним.

👉 Это выглядит просто, но именно так закладывается основа программируемых роёв наноботов.

💡 Возможные применения:
- наночастицы находят опухоль и зовут другие с лекарством,
- мини-системы доставляют груз в нужную клетку,
- наноботы очищают организм от токсинов или восстанавливают повреждённые ткани.

Раньше учёные могли наблюдать за таким процессом всего несколько секунд. Теперь, с новым инструментом Penn State, поведение можно изучать минутами, что позволяет проводить более сложные эксперименты.

🌱 Вдохновение пришло из природы - у пчёл и муравьёв есть распределение ролей и совместная работа. Если частицы смогут делать то же самое, это приблизит нас к самоорганизующимся автономным наносистемам, которые могут изменить медицину и материалы.

Это пока ранняя стадия, но именно такие шаги строят фундамент для будущих роёв наноботов.

https://www.psu.edu/news/eberly-college-science/story/can-nanobots-play-follow-leader
💰 OpenAI заключила гигантский контракт с Oracle на $300 млрд на облачные вычисления сроком примерно на 5 лет - сообщает Wall Street Journal.

Это один из крупнейших договоров на облачные вычисления в истории.

Расходы на инфраструктуру для ИИ продолжают расти рекордными темпами, несмотря на опасения «перегрева» рынка.

Масштаб сделки:
- OpenAI потребуется 4,5 гигаватта мощности - это больше, чем две плотины Гувера, или электричество для 4 миллионов домов.
- Oracle уже демонстрирует рост: акции компании подскочили, а Ларри Эллисон (глава Oracle) за сутки заработал $101 млрд и стал самым богатым человеком на планете, обогнав Илона Маска.

Рынок ИИ-вычислений превращается в арену сделок планетарного масштаба — где стоимость инфраструктуры измеряется сотнями миллиардов долларов и требует энергопотребления на уровне целых стран.

🟢 Подробнее: wsj .com/business/openai-oracle-sign-300-billion-computing-deal-among-biggest-in-history-ff27c8fe

@ai_machinelearning_big_data

#AI #Cloud #OpenAI #Oracle #DataCenters
Please open Telegram to view this post
VIEW IN TELEGRAM
В Албании назначили первого ИИ-министра — нейросеть Diella будет курировать все госзакупки.

Раньше Diella работала ассистентом в местных «Госуслугах», но теперь получила повышение до уровня министерства. Идея проста — убрать коррупцию, ведь нейросеть не берёт откаты.

Любопытно, что бывший техдиректор OpenAI Мира Мурати тоже родом из Албании.
📌xAI уволила 500 универсальных аннотаторов и вместо них в 10 раз увеличивает число специализированных AI-туторов.

xAI меняет стратегию обучения Grok. Вместо сотен универсальных аннотаторов компания делает ставку на специалистов-экспертов и увеличивает их команду в 10 раз.

Это означает переход от широкой разметки «на все темы» к глубокой проработке сложных областей — математики, кода, финансов и безопасности.

👉 Grok постепенно перестаёт быть универсальным чат-ботом и превращается в экспертного ассистента, ориентированного на критические задачи, где особенно важна точность и надёжность.

Плюс — рост качества там, где ошибки недопустимы.
Минус — возможное снижение качества в бытовых и повседневных темах.

🟠Источник: Business Insider
businessinsider.com/elon-musk-xai-layoffs-data-annotators-2025-9
🟠Вакансия в Х: https://x.com/i/jobs/1845336351098667008

@ai_machinelearning_big_data

#xAI #Grok #AI #DataAnnotation #AITutors #ElonMusk
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⚡️ Александр Мордвинцев, исследователь из Google, создал цифровые системы на основе клеточных автоматов, где каждая клетка взаимодействует только со своими соседями.

Эти нейронные клеточные автоматы (Neural Cellular Automata) способны самособираться в заданные формы и даже восстанавливаться после повреждений.

В *Quanta Magazine* рассказали о том, как учёные научились обучать искусственные "клетки" собираться в заданные формы. Это похоже на игру «Жизнь» (*Game of Life*), но наоборот.

🧩 Что такое Game of Life?
Это простая компьютерная модель: есть сетка из клеток, у каждой клетки всего два состояния — «жива» или «мертва». Жизнь клетки зависит от соседей (например, если вокруг слишком много соседей, клетка умирает).
Обычно мы задаём правила и просто смотрим, что получится.
А теперь учёные сделали наоборот: сначала задаём цель (например, фигуру), а потом подбираем правила так, чтобы клетки сами в неё собрались.

⚙️ Что изменили учёные?
1. Непрерывные состояния - клетка не просто «вкл/выкл», а может быть наполовину активна. Это как лампочка с плавным регулятором яркости.
2. Скрытые переменные - у каждой клетки есть «внутренние параметры», которые влияют на её поведение. Представь, что у клетки есть «настроение» или «память», которое не видно исследователю напрямую.
3. Асинхронное обновление — клетки меняются в случайное время, а не все сразу. Это ближе к реальной жизни, где всё развивается не идеально синхронно.

💡 Зачем это нужно?
- Восстановление после повреждений: если часть фигуры «сломать», клетки могут достроить её заново.
- Децентрализация: нет главного управляющего - каждая клетка действует локально, но вместе они формируют систему.
- Устойчивость к шуму: клетки учатся справляться с хаосом и случайностями, а не просто повторяют выученный рисунок.

🟠Какие есть ограничения?
- Пока это работает для картинок и форм, но не для сложных живых организмов.
- Чтобы система умела «регенерировать», её нужно специально тренировать.
- Перенести эту идею в настоящие биологические клетки или роботов сложно — там много физических ограничений.

🟠 Где это можно применить?
- Медицина - модели самовосстановления тканей.
- Робототехника - рой роботов, которые без команды сверху сами собираются в нужную конструкцию.
- Материалы будущего — «умные» кирпичики или детали, которые сами подстраиваются под окружение.
- Новые вычислительные системы - компьютеры без центрального процессора, где решения рождаются распределённо.

Учёные показали, что нейронные клеточные автоматы можно рассматривать как модель эволюции: геном не задаёт форму напрямую, а запускает процесс её построения, что делает системы гибкими и адаптивными.

Главное отличие от природы в том, что эволюция не имеет цели, а автоматы обучают под задачу.

Эти модели предлагают новый тип вычислений: каждая клетка взаимодействует только с соседями, что делает архитектуру распределённой и потенциально энергоэффективной.

Уже есть впечатляющие результаты — от распознавания цифр и умножения матриц до решения задач вроде IQ-тестов и управления роями роботов, которые начинают вести себя как единый организм.

В итоге работы Мордвинцева соединяют биологию, компьютеры и робототехнику, возвращая к идее, что жизнь и вычисления — две стороны одного процесса.

🟢 Полная статья: https://www.quantamagazine.org/self-assembly-gets-automated-in-reverse-of-game-of-life-20250910/

@ai_machinelearning_big_data

#evolution #machinelearning #neuralnetworks #biology
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM