Машинное обучение digest – Telegram
Машинное обучение digest
40 subscribers
1.29K photos
181 videos
651 links
Download Telegram
В Албании назначили первого ИИ-министра — нейросеть Diella будет курировать все госзакупки.

Раньше Diella работала ассистентом в местных «Госуслугах», но теперь получила повышение до уровня министерства. Идея проста — убрать коррупцию, ведь нейросеть не берёт откаты.

Любопытно, что бывший техдиректор OpenAI Мира Мурати тоже родом из Албании.
📌xAI уволила 500 универсальных аннотаторов и вместо них в 10 раз увеличивает число специализированных AI-туторов.

xAI меняет стратегию обучения Grok. Вместо сотен универсальных аннотаторов компания делает ставку на специалистов-экспертов и увеличивает их команду в 10 раз.

Это означает переход от широкой разметки «на все темы» к глубокой проработке сложных областей — математики, кода, финансов и безопасности.

👉 Grok постепенно перестаёт быть универсальным чат-ботом и превращается в экспертного ассистента, ориентированного на критические задачи, где особенно важна точность и надёжность.

Плюс — рост качества там, где ошибки недопустимы.
Минус — возможное снижение качества в бытовых и повседневных темах.

🟠Источник: Business Insider
businessinsider.com/elon-musk-xai-layoffs-data-annotators-2025-9
🟠Вакансия в Х: https://x.com/i/jobs/1845336351098667008

@ai_machinelearning_big_data

#xAI #Grok #AI #DataAnnotation #AITutors #ElonMusk
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
⚡️ Александр Мордвинцев, исследователь из Google, создал цифровые системы на основе клеточных автоматов, где каждая клетка взаимодействует только со своими соседями.

Эти нейронные клеточные автоматы (Neural Cellular Automata) способны самособираться в заданные формы и даже восстанавливаться после повреждений.

В *Quanta Magazine* рассказали о том, как учёные научились обучать искусственные "клетки" собираться в заданные формы. Это похоже на игру «Жизнь» (*Game of Life*), но наоборот.

🧩 Что такое Game of Life?
Это простая компьютерная модель: есть сетка из клеток, у каждой клетки всего два состояния — «жива» или «мертва». Жизнь клетки зависит от соседей (например, если вокруг слишком много соседей, клетка умирает).
Обычно мы задаём правила и просто смотрим, что получится.
А теперь учёные сделали наоборот: сначала задаём цель (например, фигуру), а потом подбираем правила так, чтобы клетки сами в неё собрались.

⚙️ Что изменили учёные?
1. Непрерывные состояния - клетка не просто «вкл/выкл», а может быть наполовину активна. Это как лампочка с плавным регулятором яркости.
2. Скрытые переменные - у каждой клетки есть «внутренние параметры», которые влияют на её поведение. Представь, что у клетки есть «настроение» или «память», которое не видно исследователю напрямую.
3. Асинхронное обновление — клетки меняются в случайное время, а не все сразу. Это ближе к реальной жизни, где всё развивается не идеально синхронно.

💡 Зачем это нужно?
- Восстановление после повреждений: если часть фигуры «сломать», клетки могут достроить её заново.
- Децентрализация: нет главного управляющего - каждая клетка действует локально, но вместе они формируют систему.
- Устойчивость к шуму: клетки учатся справляться с хаосом и случайностями, а не просто повторяют выученный рисунок.

🟠Какие есть ограничения?
- Пока это работает для картинок и форм, но не для сложных живых организмов.
- Чтобы система умела «регенерировать», её нужно специально тренировать.
- Перенести эту идею в настоящие биологические клетки или роботов сложно — там много физических ограничений.

🟠 Где это можно применить?
- Медицина - модели самовосстановления тканей.
- Робототехника - рой роботов, которые без команды сверху сами собираются в нужную конструкцию.
- Материалы будущего — «умные» кирпичики или детали, которые сами подстраиваются под окружение.
- Новые вычислительные системы - компьютеры без центрального процессора, где решения рождаются распределённо.

Учёные показали, что нейронные клеточные автоматы можно рассматривать как модель эволюции: геном не задаёт форму напрямую, а запускает процесс её построения, что делает системы гибкими и адаптивными.

Главное отличие от природы в том, что эволюция не имеет цели, а автоматы обучают под задачу.

Эти модели предлагают новый тип вычислений: каждая клетка взаимодействует только с соседями, что делает архитектуру распределённой и потенциально энергоэффективной.

Уже есть впечатляющие результаты — от распознавания цифр и умножения матриц до решения задач вроде IQ-тестов и управления роями роботов, которые начинают вести себя как единый организм.

В итоге работы Мордвинцева соединяют биологию, компьютеры и робототехнику, возвращая к идее, что жизнь и вычисления — две стороны одного процесса.

🟢 Полная статья: https://www.quantamagazine.org/self-assembly-gets-automated-in-reverse-of-game-of-life-20250910/

@ai_machinelearning_big_data

#evolution #machinelearning #neuralnetworks #biology
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🚀 Совет, который спас OpenAI: “Всегда делай API”

В первые годы OpenAI балансировала на грани: фундаментальные модели становились всё дороже, а продукта, который мог бы оплачивать эти расходы, так и не появлялось.

GPT-3 выглядел впечатляюще, но в реальности был слишком «сырой», чтобы построить вокруг него работающий сервис.

Сэм Альтман вспоминает: «Я поднимал градус срочности - нам нужен был продукт, а идей не было».

И тогда в памяти всплыл совет Пола Грэма, основателя Y Combinator:
👉 «Всегда делай API. Что бы ни происходило - сделай API. Хорошие вещи придут сами».

OpenAI без особых ожиданий открыла доступ к GPT-3 через API. «Может, кто-то найдёт применение», - подумали в компании.

И действительно: первыми успехами стали сервисы для копирайтинга - Jasper, Copy.ai. Но самое любопытное оказалось в другом: часть пользователей начинала просто разговаривать с моделью часами напролёт. Это не было мейнстримом, но сигнал оказался настолько сильным, что команда поняла — вот он, настоящий продукт.

📅 30 ноября 2022 года OpenAI запустила ChatGPT как «исследовательский превью» на базе GPT-3.5. Всего за 5 дней им воспользовались более миллиона человек.

🔥 Из скучного API родился продукт, который изменил представление об искусственном интеллекте. И всё началось с одного простого совета.

@ai_machinelearning_big_data


#OpenAI #СэмАльтман #ChatGPT #стартапы
🎓 ChatGPT для студентов

В одном месте собрано всё самое нужное в разделе “for Students”.

Это готовые промпты и чаты в ChatGPT, которые помогают учиться, готовиться к экзаменам и даже строить карьеру.

Что внутри:
- Более 100 готовых шаблонов для колледжа и университета.
- Категории: Учёба, Карьера, Жизнь.
- Практика: редактировать курсовые, делать конспекты, готовить планы к экзаменам.
- Карьера: советы по резюме, подготовка к собеседованиям.
- Организация: составление расписания и чек-листов.

🟠Попробовать можно здесь
https://chatgpt.com/use-cases/students

@ai_machinelearning_big_data


#ChatGPT #Students #Учёба
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🖥 Большая сделка $NVDA и $INTC

NVIDIA и Intel объявили о стратегическом партнёрстве сразу на несколько поколений продуктов.

NVIDIA инвестирует $5 млрд в акции Intel по $23.28 за штуку, а совместные решения будут объединять x86-CPU от Intel и RTX-GPU от NVIDIA через NVLink.

🔹 ПК
- Intel выпустит x86 SoC с интегрированными GPU-чиплетами NVIDIA RTX.
- Это даст более плотную связку CPU+GPU, чем PCIe (Peripheral Component Interconnect Express) - это высокоскоростная шина, которая используется для соединения различных компонентов компьютера)

🔹 Дата-центры
- Intel создаст кастомные x86-CPU специально для NVIDIA.
- NVIDIA будет предлагать клиентам выбор: ARM или x86 в своих AI-платформах.
- Это усиливает позиции NVIDIA и даёт Intel шанс вернуться в топ.

💰 Финансовая часть
- NVIDIA покупает пакет акций Intel на $5 млрд.
- Сделка - про продуктовую коллаборацию, а не про производство GPU на Intel Foundry.

⚡️ Почему это интересно:
- Windows-ПК могут превратиться в полноценные AI-машины.
- Для дата-центров появится выбор CPU-архитектуры, что расширяет рынок NVIDIA.
- Для Intel — шанс доказать, что её CPU могут конкурировать в ключевых сегментах на рынке.

Что остаётся за кадром
- Когда именно выйдут продукты и на каких процессах их будут делать.
- Детали NVLink: пропускная способность, топология памяти (DRAM HBM).
- Как будет выглядеть софт: CUDA/драйверы на Windows/x86, поддержка Linux.
- Как посчитают выручку: RTX-чиплеты в Intel-SoC и CPU в NVIDIA-платформах.

Это огромный плюс для Intel и стратегическое расширение для NVIDIA.

Если сделка произойдет, рынок ПК и дата-центров ждёт новая волна AI-систем.

А вот $AMD и $ARM теперь будет куда сложнее конкурировать.

@ai_machinelearning_big_data

#NVIDIA #Intel #NVDA #INTC #AI #GPU
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🔥 Марк Цукерберг:

> «Мы будем тратить деньги очень агрессивно.

Даже если мы потеряем пару сотен миллиардов — это будет неприятно, но лучше так, чем остаться позади в гонке за супер-интеллектом».

Эти слова показывают, насколько серьёзно Цукерберг и его компания воспринимают гонку ИИ.

💸 Капитальные вложения не сокращаются — наоборот, компании наращивают расходы.

👉 Сигнал для всего рынка: крупнейшие игроки готовы рисковать колоссальными суммами ради лидерства в ИИ.

📌Полное интервью

@ai_machinelearning_big_data

#ai #ml #airace #money #zuck
🐳 А вот и обновленная DeepSeek-V3.1-Terminus

Она даёт более стабильные и полные результаты на тестах по сравнению с предыдущей версией.

Доступна в приложении и в веб-версии и через API.

🔗 Открытые веса: https://huggingface.co/deepseek-ai/DeepSeek-V3.1-Terminus

@ai_machinelearning_big_data


#DeepSeek #opensource #llm
🚀 День релизов: Qwen выпустили Qwen3-Omni — первый нативный end-to-end *omni-modal AI*

Модель обрабатывает текст, изображения, аудио и видео в одной модели.

На бенчмарках выглядит так, как будто все модальности работают одинаково качественно.

⚡️ Особенности
- Первое место на 22 из 36 аудио- и мультимодальных бенчмарков
- Поддержка: 119 языков текста,
- Минимальная задержка — 211 мс
- Обработка аудио до 30 минут длиной
- ПОзволяет гибко настраивать через системные промпты
- Встроенный tool calling

🌟 Open-source релизы
Компания выложила три версии:
- Qwen3-Omni-30B-A3B-Instruct
- Qwen3-Omni-30B-A3B-Thinking
- Qwen3-Omni-30B-A3B-Captioner

👉 Попробовать можно здесь:
💬 Chat: https://chat.qwen.ai/?models=qwen3-omni-flash
💻 GitHub: https://github.com/QwenLM/Qwen3-Omni
🤗 Hugging Face: https://huggingface.co/collections/Qwen/qwen3-omni-68d100a86cd0906843ceccbe
🤖 ModelScope: https://modelscope.cn/collections/Qwen3-Omni-867aef131e7d4f
🎬 Demo: https://huggingface.co/spaces/Qwen/Qwen3-Omni-Demo

@ai_machinelearning_big_data


#qwen #opensource #llm #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
✔️ OpenAI активно переманивает инженеров из Apple для работы над своим первым железом, которое планируется к выпуску в 2026–27 годах.

В 2025 году в OpenAI перешло более двадцати специалистов Apple. Компания привлекает их миллионными пакетами акций и менее бюрократичной культурой. Среди новых сотрудников - дизайнер звуковых волн для Siri Сайрус Ирани и бывший топ-менеджер Apple Watch Эрик де Йонг.

Причины ухода называют одни и те же: медленные продуктовые обновления Apple и слабая динамика акций. Ситуация настолько встревожила Купертино, что было отменено выездное совещание в Китае, чтобы удержать ключевых сотрудников ближе к офису.
Новость

✔️ Qwen представила новую модель Qwen3-TTS-Flash для преобразования текста в речь. Разработчики называют её самой стабильной в линейке.

Модель поддерживает 14 выразительных голосов и умеет работать с 10 языками, включая русский. Задержка генерации составляет всего 97 миллисекунд — примерно одна десятая секунды, что открывает путь к полноценным голосовым ассистентам в реальном времени.
Qwen3-TTS-Flash

✔️ OpenAI объявила о заключении стратегического партнёрства с Nvidia, которое уже называют историческим.

Главное в сделке - Nvidia инвестирует до 100 миллиардов долларов, предоставляя инфраструктуру для обучения и запуска моделей OpenAI. Речь идёт о строительстве датацентров совокупной мощностью не менее 10 гигаватт, что эквивалентно миллионам GPU. Таким образом Nvidia становится ключевым поставщиком вычислительных мощностей для компании Сэма Альтмана.

Первый кластер на базе платформы NVIDIA Vera Rubin планируется запустить во второй половине 2026 года.
Openai

✔️Инженеры-биомедики из Duke University разработали платформу TuNa-AI, которая сочетает искусственный интеллект и робототехнику для создания и оптимизации наночастиц, используемых в разработке лекарств.

В отличие от существующих моделей, ограниченных фиксированными соотношениями материалов, TuNa-AI может исследовать как состав, так и количество ингредиентов, что позволяет повысить стабильность и эффективность наночастиц.

В рамках первых испытаний система показала значимые результаты. Успешность формирования наночастиц увеличилась на 42,9%. При использовании препарата венетоклакс, применяемого в лечении лейкоза, удалось улучшить его растворимость и эффективность подавления раковых клеток. В другом эксперименте содержание канцерогенного вспомогательного вещества удалось сократить на 75%, сохранив при этом эффективность химиотерапии и улучшив распределение препарата в организме.

✔️ И еще про Qwen, китайцы представили модель Qwen-Image-Edit-2509, которую уже называют «убийцей» Nano Banana. Она умеет редактировать сразу несколько изображений и комбинировать их в единый результат.

Модель лучше сохраняет контекст, лица и целостность объектов, а встроенный ControlNet позволяет менять позы персонажей для точного управления сценой.
Qwen-Image-Edit

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🔥 HunyuanImage 3.0 — свежая open-source модель для генерации изображений по тексту (text-to-image) от Hunyuan.

Размер *80B параметров**, из которых 13B активируются на токен во время инференса.

Качество сопоставимо с флагманскими закрытыми моделями индустрии.


Что интересного:
- Основана на собственной мультимодальной LLM Tencent
- Постобучение заточено под text-to-image задачи
- Архитектура MoE + Transfusion объединяет Diffusion и LLM в единую систему

🚀 Возможности:

- Понимает сложные промпты длиной до тысячи слов
- Детализированные изображения с текстом
- Генерирует сложные иллюстрации и комиксы

👉 Попробовать: https://hunyuan.tencent.com/image
🔗 GitHub: https://github.com/Tencent-Hunyuan/HunyuanImage-3.0
🤗 Hugging Face: https://huggingface.co/tencent/HunyuanImage-3.0

@ai_machinelearning_big_data


#AI #GenerativeAI #Adobe #MorganStanley
✔️ Илон Маск стал первым человеком в истории, чьё состояние превысило $500 млрд

Для сравнения: это больше, чем суммарное богатство Джеффа Безоса ($233,5 млрд) и Марка Цукерберга ($245,7 млрд).

Только за последний год Маск увеличил своё состояние на $245 млрд.

✔️ Стартап Миры Мурати Thinking Machines представил свой первый продукт - Tinker.
Но это не новая модель, а гораздо более практичный инструмент: API для файнтюнинга.

Идея проста: вы пишете код для дообучения, а все заботы о железе берут на себя Thinking Machines - от распределения ресурсов до восстановления после сбоев.

Tinker поддерживает широкий спектр моделей - от небольших до очень крупных. В API доступны базовые примитивы (forward_backward, optim_step, sample), из которых можно собрать кастомные пайплайны. А для тех, кто хочет сразу сложные сценарии, есть Tinker Cookbook - библиотека с готовыми реализациями популярных алгоритмов: RLHF, Multi-Agent, Tool Use, Math Reasoning и других.

Пока продукт доступен только в приватной бете, но уже можно записаться в вейтлист.

✔️ Nvidia представила Reinforcement Learning Pretraining (RLP) - новый способ обучения ИИ, при котором модель учится рассуждать ещё на этапе претренинга.

В эксперименте на 12B модели RLP повысил точность на 35%, используя всего 0,125% данных.

Главное отличие: вместо обычного предсказания следующего токена модель сначала генерирует «мысль», а затем проверяет, улучшает ли она прогноз. За полезные мысли модель получает вознаграждение, что формирует навык пошагового мышления с самого начала обучения.

На математических и бенчмарках тестах RLP превзошёл стандартные подходы и сохранил преимущество даже после классического дообучения.
nvidia

✔️ Вышла версия Cursor 1.7. Теперь пользоваться инструментом стало удобнее за счёт ряда новых функций.

Подсказки появляются прямо во время ввода промпта и принимаются нажатием Tab. Появились кастомные hooks, которые позволяют управлять жизненным циклом агентов, а также deeplinks для быстрого обмена промптами.

Правила можно назначать сразу для всей команды, включая Bugbot для автоматического кодревью. Кроме того, теперь статус агентов доступен прямо из панели, без необходимости открывать само приложение.
cursor

✔️ Мира Мурати привлекла рекордные $2 млрд при оценке $10–12 млрд - крупнейший посевной раунд в истории США.

Она сохранила полный контроль над стартапом, а среди инвесторов - a16z, Accel, Nvidia, AMD и Cisco. В команду вошёл сооснователь OpenAI Джон Шульман и группа экс-исследователей.

Компания зарегистрирована как public benefit corporation, обещает open-source и первый продукт в ближайшие месяцы.
Information

✔️ OpenAI стала самой дорогой частной компанией в мире - её оценка достигла $500 млрд, обогнав SpaceX и ByteDance.

За последние полгода стоимость выросла на $200 млрд. При этом стартап продолжает наращивать убытки, но инвесторы пока закрывают на это глаза.

Сэм Альтман фактически переигрывает весь рынок, превращая OpenAI в главного игрока индустрии.
Bloomberg

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥 Разбор того, как Mixture-of-Experts (MoE) LLM можно сделать реально дешёвыми, если подогнать архитектуру под железо.

В чём проблема
- MoE включает только часть экспертов на токен → экономия compute.
- Но при больших batch size растут коммуникации и память:
- больше экспертов грузится,
- KV-кэш раздувается,
- узким местом становится память и сеть.

Решение - expert parallelism
- Эксперты размазаны по многим GPU.
- Токен идёт к top-N экспертам + shared-эксперт.
- В DeepSeek: 8 экспертов из 256 на слой × 58 слоёв.

Чтобы справиться с коммуникациями:
- внимание остаётся data parallel (кэш сидит на одном GPU),
- гоняются только маленькие вектора активаций,
- два микробатча: один считает, другой общается,
- горячие эксперты дублируются,
- токены стараются держать экспертов в пределах одного узла.

Оптимизации
- multi-head latent attention → сжатие KV-кэша до ~70KB вместо сотен KB.
- перестройка математики внимания → меньше вычислений при длинных контекстах.
- prefill и decode разделены, кэш даёт ~56% хитов → меньше затрат.

Экономика
- Стоимость = $/GPU-час ÷ токены/час.
- Дешевле при больших batch size, быстрых interconnect, большем числе GPU.
- Но если сервис обещает 20 токенов/сек на юзера → батчи меньше, цена выше.

Практика
- NVLink кластеры масштабируются отлично.
- InfiniBand между DGX - bottleneck.
- 72 GPU при batch 64 → миллиарды токенов в день за ~$0.40 / 1M токенов.

Итог
MoE становятся дёшевыми при:
- больших батчах,
- сжатом KV-кэше,
- грамотном роутинге,
- разделении префилла и декода,
- быстрых interconnect.

Это даёт гибкость: быстрый чат продаётся дороже, а bulk-генерация (синтетика, fine-tune) идёт почти по себестоимости.

https://www.tensoreconomics.com/p/moe-inference-economics-from-first
✔️ Ming-UniAudio - универсальный инструмент для работы с речью.

Модель объединяет понимание, генерацию и редактирование аудио без привязки к таймстампам. Основой стал новый токенайзер MingTok-Audio, на котором построен единый Speech LLM. Одновременно выпущен бенчмарк для свободного редактирования речи.
GitHub / Tokenizer / Model / Benchmark

✔️ Свежий бесплатный курс по нейросетям от Эндрю Ына и Стэнфорда

Основатель Coursera Эндрю Ын выпустил бесплатный курс по нейросетям.

В курсе: базовые основы Deep Learning, практические задания и советы по построению карьеры в AI.

Первая лекция уже доступна, все материалы и расписание — открыты. Отличный шанс провести выходные с пользой и глубже разобраться в мире нейросетей.
Первая лекция / Расписание

✔️ AI-инфраструктура тянет экономику США: 40% роста ВВП и триллионы инвестиций впереди

Почти 40% роста ВВП США за последний квартал обеспечили капитальные вложения в технологии, главным образом связанные с AI.

UBS прогнозирует, что расходы компаний на AI-инфраструктуру достигнут $375 млрд в 2025 году и вырастут до $500 млрд в 2026-м. Но основной рост идёт не от самого AI, а от строительства «фабрик мощности» - дата-центров и инфраструктуры. По оценке Brookfield Asset Management, за ближайшие 10 лет в эту сферу уйдёт $7 трлн.

По данным Минторга США, инвестиции в софт и компьютерное оборудование (без учёта зданий дата-центров) дали четверть всего экономического роста за квартал.

Этот всплеск трат меняет и фондовый рынок: как отмечает Deutsche Bank, индекс S&P 500 вырос на 13.81% с начала года, тогда как равновзвешенный вариант прибавил лишь 7.65%. То есть рост обеспечивают в основном «Великолепная семёрка» технологических гигантов.
X

✔️ Alpha School: в Техасе открылась школа, где учителей заменил ИИ

Дети 4–5 классов учатся два часа утром по индивидуальным программам в науке, математике и чтении, а после обеда занимаются проектами и жизненными навыками.

Учителей здесь называют «гидами» - они мотивируют, а не преподают, получая шестизначные зарплаты. Школа утверждает, что её ученики входят в топ-1% по тестам, хотя педагоги скептически относятся к роли ИИ.

Обучение стоит от $40 000 в год, но основатели считают модель примером будущего образования.
cbsnews

✔️ ИИ помог Теренсу Тао найти контрпример в математике

Один из величайших математиков современности, Теренс Тао, использовал искусственный интеллект, чтобы решить задачу на MathOverflow о последовательности наименьших общих кратных.

У него было теоретическое подозрение, что ответ отрицательный, но требовались конкретные числовые параметры для построения контрпримера. Сначала Тао просил ИИ сгенерировать Python-код для поиска, но из-за неверных параметров и долгого времени выполнения этот путь оказался неэффективным.

Затем он перешёл к пошаговому алгоритму: ИИ выполнял эвристические расчёты, помогая сузить диапазон параметров. В итоге удалось получить рабочие значения, которые Тао проверил самостоятельно с помощью короткого Python-скрипта, также созданного ИИ.

Такая стратегия позволила сэкономить часы ручного кодирования и отладки: ИИ не только ускорил поиск, но и выявил несколько ошибок в начальных рассуждениях. Этот случай показывает, как современные системы могут становиться реальными ассистентами даже в фундаментальной математике.
mathstodon

@ai_machinelearning_big_data


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
📘 Learning Deep Representations of Data Distributions — новая бесплатная книга от исследователей UC Berkeley (Sam Buchanan, Druv Pai, Peng Wang, Yi Ma).

Главная идея книги - показать, почему и как глубокие нейросети учатся извлекать сжатые, информативные представления сложных данных, и что у них внутри:

💡В книге вы найдите:

🟠простое объяснение фундаментальных принципов архитектур нейросетей через оптимизацию и теорию информации.
🟠как модели формируют инвариантные и устойчивые представления
🟠связь с PCA, автоэнкодерами и дифференцируемыми отображениями — то есть, как нейросети по сути обобщают классические методы сжатия данных и учатся находить их оптимальное представление
🟠взгляд на обучение через энергию, энтропию и структуру данных
🟠свежие идеи для понимания LLM и генеративных моделей

📖 Читать онлайн: ma-lab-berkeley.github.io/deep-representation-learning-book

🖥 Github: https://github.com/Ma-Lab-Berkeley/deep-representation-learning-book

@ai_machinelearning_big_data

#book #deeplearning #representationlearning #ucberkeley #machinelearning
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM