This media is not supported in your browser
VIEW IN TELEGRAM
Чуть меньше 3-х лет прошло между этими генерациями Уилла Смита, поедающего спагетти.
Слева - ролик, созданный в феврале 2023 года пользователем Reddit chaindrop на модели ModelScope text2video.
Справа - современная генерация на свежем Kling 2.6
С чем мы будем сравнивать видос Уилла Смита в 2030 году?
Please open Telegram to view this post
VIEW IN TELEGRAM
Модель построена на архитектуре Mixture of Experts с общим размером 406B параметров и 32B активных.
Модель поддерживает контекст 256K токенов. HY 2.0 демонстрирует заметные улучшения на ключевых бенчмарках.
Главные достижения HY 2.0:
🧠 Reasoning: результат 73.4 на IMO AnswerBench - почти плюс 20 процентов, что закрепляет модель среди лидеров по математическому и научному мышлению.
🛠 Coding и Agents: скачок в SWE Bench Verified с 6.0 до 53.0, а Tau2 Bench вырос с 17.1 до 72.4.
⚡ Instruction Following: более стабильное выполнение сложных инструкций и естественный стиль ответов.
Модель выпускается в двух вариантах:
• HY 2.0 Think - для глубокого рассуждения, генерации кода и сложных задач
• HY 2.0 Instruct - для диалога, креативного письма и многотуровых контекстных бесед
🌐 Website: https://hunyuan.tencent.com
🔗 API Access: http://hunyuan.cloud.tencent.com/#/app/modelSquare
📄 Documentation: https://cloud.tencent.com/document/product/1729/104753
@data_analysis_ml
#AI #Tencent #Hunyuan #HY2 #LLM #MoE #DeepLearning #AIModels
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Исследовательская группа DeepReinforce разработала систему полностью автоматического написания GPU-кода для матричного умножения под названием CUDA-L2.
Этот код работает на 10–30% быстрее, чем cuBLAS и cuBLASLt, а это, на минуточку, уже оптимизированные библиотеки от самой NVIDIA.
Обычно такие библиотеки создаются вручную людьми, которые используют готовые шаблоны ядер. А автотюнеры лишь подкручивают параметры, например, размер тайлов.
Но DeepReinforce считают, что даже критически важные и глубоко оптимизированные задачи, как HGEMM, могут быть улучшены с помощью LLM, работающей в связке с RL.
В системе CUDA-L2 языковая модель буквально пишет исходный код CUDA с нуля для каждого размера матрицы. Она не просто меняет параметры, она может менять структуру кода, циклы, стратегию тайлинга, паддинг и даже свизл-паттерны. А еще, она сама выбирает стиль программирования - будь то сырой CUDA, CuTe, CUTLASS или inline PTX.
Процесс выглядит так: цикл RL запускает сгенерированные ядра на реальном железе, измеряет скорость и корректность, а затем обновляет LLM. Со временем модель выводит свои собственные правила производительности, вместо того чтобы полагаться на знания, заложенные людьми.
В качестве генератора использовалась модель DeepSeek 671B. Ее дополнительно доучили на смеси массива CUDA-ядер и качественном коде из библиотек PyTorch, ATen, CUTLASS и примеров от NVIDIA.
Для претрейна и файнтюна LLM большая часть времени GPU тратится именно на операции матричного умножения HGEMM. Если ускорить эти ядра на те самые 10–30%, которые обещает CUDA-L2, то весь процесс обучения становится заметно дешевле и быстрее.
Поскольку CUDA-L2 обрабатывает около 1000 реальных размеров матриц, а не пару вручную настроенных, ускорение работает для самых разных архитектур. Это значит, что в тот же бюджет на GPU можно вместить больше токенов обучения, больше прогонов SFT или RLHF и т.д.
HGEMM-ядра, созданные CUDA-L2, стабильно быстрее стандартных библиотек.
В так называемом "оффлайн-сценарии" CUDA-L2 работает примерно на 17–22% быстрее, чем
torch.matmul, cuBLAS и cuBLASLt. Она даже на 11% обгоняет cuBLASLt AutoTuning, который сам по себе уже использует поиск ядра.А в "серверном", сценарии, который имитирует реальный инференс с паузами между вызовами - разница еще больше: буст в 24–29% по сравнению с
torch.matmul и cuBLAS.Простым рисёрчем проект не ограничен, в репозитории на Github авторы выложили оптимизированные ядра HGEMM A100 для 1000 конфигураций.
В планах: расширение на архитектуры Ada Lovelace, Hopper, Blackwell, поддержка более плотных конфигураций и 32-битный HGEMM.
@ai_machinelearning_big_data
#AI #ML #CUDA #DeepReinforce
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
The Verge пишет, что по информации инсайдеров, OpenAI планирует представить обновление уже в начале следующей недели, ориентировочно 9 декабря.
Ожидается, что GPT-5.2 вернет компании доминирующие позиции в сегменте больших языковых моделей.
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🇨🇳 Китай официально начал продавать первый в мире квантовый компьютер на атомной базе — момент, когда квантовое железо выходит из лабораторий в коммерческий рынок.
В отличие от сверхпроводниковых или ионных систем, эта машина использует отдельные атомы, расположенные в оптических решётках. Такие атомы работают как стабильные кубиты с намного более длительным временем когерентности — меньше ошибок, значит можно выполнять глубже и сложнее вычисления.
Первые демонстрации показали работу над молекулярными симуляциями, взломом криптографии и оптимизационными задачами, которые доводят классические суперкомпьютеры до предела. Управляя атомами с помощью ультра-точных лазеров, разработчики добились уровня контроля, при котором атомные кубиты становятся особенно надёжными для реальных научных и промышленных задач.
Впервые университеты, корпорации и исследцентры могут купить полноценный атомный квантовый компьютер, а не пользоваться им через облако. Это открывает путь к частному квантовому поиску лекарств, разработке новых материалов, ускорению ИИ и тестированию будущей кибербезопасности.
Аналитики предупреждают: это может резко ускорить глобальную квантовую гонку и изменить баланс технологической мощи в ближайшие десятилетия.
#QuantumComputing
https://x.com/ShiningScience/status/1997633207957926118
В отличие от сверхпроводниковых или ионных систем, эта машина использует отдельные атомы, расположенные в оптических решётках. Такие атомы работают как стабильные кубиты с намного более длительным временем когерентности — меньше ошибок, значит можно выполнять глубже и сложнее вычисления.
Первые демонстрации показали работу над молекулярными симуляциями, взломом криптографии и оптимизационными задачами, которые доводят классические суперкомпьютеры до предела. Управляя атомами с помощью ультра-точных лазеров, разработчики добились уровня контроля, при котором атомные кубиты становятся особенно надёжными для реальных научных и промышленных задач.
Впервые университеты, корпорации и исследцентры могут купить полноценный атомный квантовый компьютер, а не пользоваться им через облако. Это открывает путь к частному квантовому поиску лекарств, разработке новых материалов, ускорению ИИ и тестированию будущей кибербезопасности.
Аналитики предупреждают: это может резко ускорить глобальную квантовую гонку и изменить баланс технологической мощи в ближайшие десятилетия.
#QuantumComputing
https://x.com/ShiningScience/status/1997633207957926118
📉 Производительность и зарплаты давно разошлись - и ИИ, вероятно, только расширит этот разрыв.
До примерно 1970-х рост выпуска на работника и рост оплаты труда двигались вместе.
После производительность продолжила резко расти, а почасовая компенсация застыла. Это почти наверняка означает, что добавленная стоимость начала уходить владельцам капитала, а не обычным работникам.
ИИ усиливает тенденцию: он повышает эффективность, но выгоды могут закрепляться у тех, кто владеет технологиями и инфраструктурой, а не у тех, кто их использует.
До примерно 1970-х рост выпуска на работника и рост оплаты труда двигались вместе.
После производительность продолжила резко расти, а почасовая компенсация застыла. Это почти наверняка означает, что добавленная стоимость начала уходить владельцам капитала, а не обычным работникам.
ИИ усиливает тенденцию: он повышает эффективность, но выгоды могут закрепляться у тех, кто владеет технологиями и инфраструктурой, а не у тех, кто их использует.
💰 OpenAI строит гигантские дата-центры, но 2026-й может стать моментом “проверки на реальность”
Forbes пишет: на фоне планов инфраструктуры примерно на $1,4 трлн, OpenAI имеет лишь около $20 млрд выручки и большая часть проекта опирается на ожидание будущего спроса, которого пока нет.
Модель финансирования выглядит так:
Cloud-операторы вроде CoreWeave и Crusoe, плюс партнёры типа SoftBank и Oracle, берут кредиты, покупают GPU, закладывают их как залог, и рассчитывают, что:
- трафик OpenAI загрузит мощности,
- Nvidia “выкупит” избыточную ёмкость, если спрос окажется ниже ожиданий.
То есть создаётся замкнутый цикл, который может переоценивать реальную рыночную потребность.
Проблема в том, что корпоративный спрос пока — это осторожные пилоты, а кластеры нужно обновлять каждые 5–7 лет.
По мнению автора, в 2026 инвесторы и кредиторы начнут давить на OpenAI, требуя замедлить или урезать проект Stargate, если компания не докажет, что каждая единица мощности приносит прибыль быстрее, чем Google и другие успевают догнать по качеству моделей.
⚠️ Вывод: если реальный спрос не вырастет, текущая стратегия может превратиться в риск «слишком много построили слишком рано».
forbes.com/sites/paulocarvao/2025/12/06/why-openais-ai-data-center-buildout-faces-a-2026-reality-check/
Forbes пишет: на фоне планов инфраструктуры примерно на $1,4 трлн, OpenAI имеет лишь около $20 млрд выручки и большая часть проекта опирается на ожидание будущего спроса, которого пока нет.
Модель финансирования выглядит так:
Cloud-операторы вроде CoreWeave и Crusoe, плюс партнёры типа SoftBank и Oracle, берут кредиты, покупают GPU, закладывают их как залог, и рассчитывают, что:
- трафик OpenAI загрузит мощности,
- Nvidia “выкупит” избыточную ёмкость, если спрос окажется ниже ожиданий.
То есть создаётся замкнутый цикл, который может переоценивать реальную рыночную потребность.
Проблема в том, что корпоративный спрос пока — это осторожные пилоты, а кластеры нужно обновлять каждые 5–7 лет.
По мнению автора, в 2026 инвесторы и кредиторы начнут давить на OpenAI, требуя замедлить или урезать проект Stargate, если компания не докажет, что каждая единица мощности приносит прибыль быстрее, чем Google и другие успевают догнать по качеству моделей.
⚠️ Вывод: если реальный спрос не вырастет, текущая стратегия может превратиться в риск «слишком много построили слишком рано».
forbes.com/sites/paulocarvao/2025/12/06/why-openais-ai-data-center-buildout-faces-a-2026-reality-check/
Главные новости ИИ и МЛ
✔️ Релиз GLM-4.6V с нативной поддержкой вызова функций.
В линейку вошли флагманская GLM-4.6V на 106 млрд. параметров и облегченная GLM-4.6V-Flash (9B). Обе получили контекстное окно в 128k токенов и генерацию смешанного контента, где текст комбинируется с изображениями. Модель может передавать изображения и скриншоты во внешние инструменты без предварительной конвертации в текст, а также встраивать визуальные результаты обратно в цепочку рассуждений.
Обе модели уже на HuggingFace, доступны по API и в веб-версии.
z.ai
✔️ Стартап из шести человек обошел Google Gemini 3 в тесте на логику ARC-AGI.
Команда Poetiq заняла 1 место в полузакрытом бенчмарке ARC-AGI-2, набрав 54% правильных решений. Это позволило стартапу уверенно опередить гиганта индустрии: ранее Google отчитывалась о результате в 45% для Gemini 3 Deep Think.
ARC-AGI, разработанный исследователем Франсуа Шолле, считается одним из самых трудных испытаний для ИИ. Тест проверяет не просто знания, а способность к абстрактному мышлению и решению принципиально новых задач.
Успех Poetiq обеспечен не обучением новой модели, а эффективной оркестрацией уже существующих.
poetiq.ai
✔️ Соавтор архитектуры Transformer выпустил модель для кодинга Rnj-1.
Стартап Essential AI, основанный Ашишем Васвани, представил модель с открытыми весами Rnj-1. При размере всего в 8 млрд. параметров, она демонстрирует топовые результаты в SWE-bench Verified. Rnj-1 набрала 20,8 балла, тогда как аналогичная по размеру Qwen 3 (8B) достигла лишь отметки в 4,5.
В основе новинки лежит архитектура Gemma 3. Разработчики намеренно отказались от упора на пост-трейн и RL. Вместо этого, команда сфокусировалась на качественном предобучении с использованием оптимизатора Muon. Веса базовой и instrust-версии доступны на HF.
essential.ai
✔️ NVIDIA представила крупнейшее обновление CUDA с 2006 года.
Вместе с релизом CUDA 13.1 компания запускает виртуальный набор инструкций для "тайлового" параллельного программирования. Новая парадигма абстрагирует низкоуровневые детали железа, позволяя писать алгоритмы более высокого уровня. CUDA Tile дает возможность оперировать блоками данных, автоматически оптимизируя выполнение под конкретные тензорные ядра и архитектуру памяти.
Фундаментом технологии стал CUDA Tile IR - промежуточное представление, аналогичное PTX, но заточенное под матричные операции. Это обеспечивает кросс-платформенность: написанный код будет эффективно работать на разных поколениях GPU без глубокого рефакторинга.
developer.nvidia.com
✔️ Grok 4.20 обыграл топовые модели в биржевой торговле.
Завершилось соревнование Alpha Arena Season 1.5, где участникам давали по $10 тыс. для автоматической торговли акциями США в течение двух недель. Grok 4.20 не только вышел в плюс, заработав $4 844 (общая доходность 12%), но и существенно опередил конкурентов.
GPT 5.1, Gemini 3.0 Pro и Claude Sonnet 4.5 завершили тот же период с отрицательными результатами. В режиме "осведомленности" Grok показал доходность около 50%. Эксперты полагают, что решающим фактором стал прямой доступ модели к данным платформы X. Анализ постов в реальном времени позволил алгоритму точнее оценивать рыночные настроения и тренды.
nof1.ai
@ai_machinelearning_big_data
#news #ai #ml
В линейку вошли флагманская GLM-4.6V на 106 млрд. параметров и облегченная GLM-4.6V-Flash (9B). Обе получили контекстное окно в 128k токенов и генерацию смешанного контента, где текст комбинируется с изображениями. Модель может передавать изображения и скриншоты во внешние инструменты без предварительной конвертации в текст, а также встраивать визуальные результаты обратно в цепочку рассуждений.
Обе модели уже на HuggingFace, доступны по API и в веб-версии.
z.ai
Команда Poetiq заняла 1 место в полузакрытом бенчмарке ARC-AGI-2, набрав 54% правильных решений. Это позволило стартапу уверенно опередить гиганта индустрии: ранее Google отчитывалась о результате в 45% для Gemini 3 Deep Think.
ARC-AGI, разработанный исследователем Франсуа Шолле, считается одним из самых трудных испытаний для ИИ. Тест проверяет не просто знания, а способность к абстрактному мышлению и решению принципиально новых задач.
Успех Poetiq обеспечен не обучением новой модели, а эффективной оркестрацией уже существующих.
poetiq.ai
Стартап Essential AI, основанный Ашишем Васвани, представил модель с открытыми весами Rnj-1. При размере всего в 8 млрд. параметров, она демонстрирует топовые результаты в SWE-bench Verified. Rnj-1 набрала 20,8 балла, тогда как аналогичная по размеру Qwen 3 (8B) достигла лишь отметки в 4,5.
В основе новинки лежит архитектура Gemma 3. Разработчики намеренно отказались от упора на пост-трейн и RL. Вместо этого, команда сфокусировалась на качественном предобучении с использованием оптимизатора Muon. Веса базовой и instrust-версии доступны на HF.
essential.ai
Вместе с релизом CUDA 13.1 компания запускает виртуальный набор инструкций для "тайлового" параллельного программирования. Новая парадигма абстрагирует низкоуровневые детали железа, позволяя писать алгоритмы более высокого уровня. CUDA Tile дает возможность оперировать блоками данных, автоматически оптимизируя выполнение под конкретные тензорные ядра и архитектуру памяти.
Фундаментом технологии стал CUDA Tile IR - промежуточное представление, аналогичное PTX, но заточенное под матричные операции. Это обеспечивает кросс-платформенность: написанный код будет эффективно работать на разных поколениях GPU без глубокого рефакторинга.
developer.nvidia.com
Завершилось соревнование Alpha Arena Season 1.5, где участникам давали по $10 тыс. для автоматической торговли акциями США в течение двух недель. Grok 4.20 не только вышел в плюс, заработав $4 844 (общая доходность 12%), но и существенно опередил конкурентов.
GPT 5.1, Gemini 3.0 Pro и Claude Sonnet 4.5 завершили тот же период с отрицательными результатами. В режиме "осведомленности" Grok показал доходность около 50%. Эксперты полагают, что решающим фактором стал прямой доступ модели к данным платформы X. Анализ постов в реальном времени позволил алгоритму точнее оценивать рыночные настроения и тренды.
nof1.ai
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
huggingface.co
GLM-4.6V - a zai-org Collection
We’re on a journey to advance and democratize artificial intelligence through open source and open science.
Минторг США готовится разрешить NVIDIA экспортировать H200 в Китай.
Контекст:
• Доля Китая у NVIDIA упала с 95% до 0%
• Рынок AI-чипов Китая — ~$50 млрд, растёт ~50% в год
• Текущие прогнозы компании закладывают полный ноль доходов из Китая
Если экспорт H200 одобрят, Китай из “нуля” превращается для NVIDIA в фактически бесплатный опцион на рынок $50 млрд.
Контекст:
• Доля Китая у NVIDIA упала с 95% до 0%
• Рынок AI-чипов Китая — ~$50 млрд, растёт ~50% в год
• Текущие прогнозы компании закладывают полный ноль доходов из Китая
Если экспорт H200 одобрят, Китай из “нуля” превращается для NVIDIA в фактически бесплатный опцион на рынок $50 млрд.
Tencent в коллаборации с ведущими китайскими университетами выложила в открытый доступ модель GeoVista, которая предлагает интересный подход к решению проблемы "где сделано это фото" - она делает ставку на активный майнинг данных из внешних источников.
Система на архитектуре Qwen2.5-VL-7B-Instruct использует 2 инструмента: функцию зума и поисковый движок, подтягивающий до 10 релевантных ссылок с платформ Tripadvisor, Pinterest и Wikipedia и социальных сетей.
Модель самостоятельно решает, в какой момент задействовать тот или иной инструмент, что, по сути, имитирует ход мыслей человека-расследователя.
GeoVista обучалась сначала (SFT) на 2 тыс. примерах, а потом (RL) уже на 12 тыс. примерах. Для балансировки RL собрали кастомную систему вознаграждений, привязанную к географической точности: правильный ответ на уровне города ценится выше, чем попадание в провинцию или страну.
Готовую модель прогнали на собственном бенчмарке GeoBench. На нем GeoVista показала 92,6% точности при определении страны, 79,6% региона и 72,7% - конкретного города.
Легче всего модели даются панорамы (79,5% точности на уровне города) и стандартные фото (72,2%), а вот спутниковые снимки остаются ахиллесовой пятой, здесь показатель падает до 44,9%.
Если сравнивать с закрытыми моделями, то GeoVista дышит в спину Gemini 2.5 Flash (73,3% на уровне города) и заметно обходит GPT-5, который показал лишь 67,1%. Лидером пока остается Gemini 2.5 Pro с результатом 78,98%, а вот другие открытые модели (Mini-o3-7B), безнадежно отстают с показателем 11,3%.
В метриках физического расстояния разрыв с топами ощутим сильнее. 52,8% предсказаний GeoVista попали в радиус 3 километров от реальной точки, при этом медианное отклонение составило 2,35 километра.
Для сравнения, Gemini 2.5 Pro укладывается в 3-километровую зону в 64,45% случаев с медианным отклонением всего в 800 метров. Даже GPT-5, проигравший в общей точности, показал медиану в 1,86 км.
Помимо модели, команда опубликовала и сам датасет GeoBench: 1142 изображения из 66 стран и 108 городов. В выборку вошли 512 обычных фотографий, 512 панорам и 108 спутниковых снимков.
Главное отличие этого набора от аналогов вроде OpenStreetView-5M - жесткая фильтрация. Разработчики намеренно удалили "нелокализуемые" изображения: крупные планы еды или типичные пейзажи без примет и слишком очевидные достопримечательности, чтобы исключить легкие победы для алгоритмов.
@ai_machinelearning_big_data
#AI #ML #LLM #GeoVista #Tencent
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Mistral AI представила Devstral 2 и Mistral Vibe CLI - новое поколение моделей для программирования и CLI для автоматизации разработки.
Два Релиза:
• Devstral 2 - 123 млрд параметров, плюс облегчённая Devstral Small (24 млрд) для локального использования
• Vibe CLI - интерфейс командной строки, который понимает контекст проекта и работает с файлами, git и сборкой
📌 Обе модели - SOTA-уровня, open source и бесплатны для использования.
https://mistral.ai/news/devstral-2-vibe-cli
Два Релиза:
• Devstral 2 - 123 млрд параметров, плюс облегчённая Devstral Small (24 млрд) для локального использования
• Vibe CLI - интерфейс командной строки, который понимает контекст проекта и работает с файлами, git и сборкой
📌 Обе модели - SOTA-уровня, open source и бесплатны для использования.
uv tool install mistral-vibehttps://mistral.ai/news/devstral-2-vibe-cli
Главные ИИ новости
✔️ OpenAI наблюдает взрывной рост корпоративного ИИ.
Компания опубликовала отчет «The state of enterprise AI», который указывает на масштабную трансформацию бизнес-процессов под влиянием ИИ. База корпоративных клиентов превысила 1 миллион организаций, а число Enterprise-мест за год выросло в 9 раз.
Главным трендом стало качественное изменение сценариев использования: потребление ризонинг-токенов подскочило на 320%. Это говорит о том, что бизнес перешел от простых чат-ботов к решению многоступенчатых инженерных и аналитических задач.
Статистика выявила четкую корреляцию между глубиной погружения в технологии и продуктивностью. Сотрудники, использующие GPT-5 Thinking и Deep Research, экономят более 10 часов в неделю, при этом потребляя в 8 раз больше ресурсов модели, чем обычные пользователи. Особенно заметен разрыв в разработке: там генерируют код через ИИ в 17 раз активнее.
openai.com
✔️ Anthropic передала управление протоколом MCP в некоммерческий фонд.
Model Context Protocol передан организации Agentic AI Foundation, действующей в структуре Linux Foundation. Это стратегический шаг: технология универсального стандарта для подключения ИИ-моделей к внешним базам данных и инструментам, теперь гарантированно останется нейтральной и открытой. Соучредителями нового фонда вместе с Anthropic выступили OpenAI и Block, а поддержку инициативе оказывают Google, Microsoft и AWS.
За год существования MCP добился массовости: протокол используют ChatGPT, Gemini, Claude и VS Code, а число загрузок SDK превысило 97 млн. Переход под эгиду Linux Foundation ставит MCP в один ряд с Kubernetes и PyTorch. Теперь развитие стандарта будет определяться сообществом, что важно для создания совместимой экосистемы ИИ-агентов.
anthropic.com
✔️ Китай ограничит использование чипов Nvidia H200 вопреки разрешению на экспорт от США.
Власти КНР планируют ввести строгие ограничения на доступ и эксплуатацию Nvidia H200. Это решение готовится на фоне одобрения экспорта данных чипов со стороны администрации США. Несмотря на неожиданный «зеленый свет» из Вашингтона, Пекин демонстрирует осторожность в вопросах использования зарубежного железа.
Конкретные детали и механизмы новых барьеров пока не обнародованы. МИД Китая в ответ на запросы ограничился стандартным заявлением о важности взаимовыгодного сотрудничества, не прояснив судьбу поставок.
ft.com
✔️ Google выпустит умные очки с ИИ в 2026 году.
Google официально подтвердила планы по запуску линейки смарт-очков с ИИ в 2026 году. Техногигант намерен потеснить Марка Цукерберга на этом рынке, объединив усилия с Samsung, Warby Parker и корейским фешн-брендом Gentle Monster.
В разработке находятся 2 типа устройств. Первый вариант - оправа с аудиосистемой для голосового взаимодействия с ИИ, второй - модель с встроенными дисплеями для навигации и перевода в реальном времени. Чтобы сохранить вес и габариты на уровне обычных очков, инженеры решили перенести основную вычислительную нагрузку на сопряженный смартфон.
cnbc.com
✔️ Инженеры EPFL превратили панцири лобстеров в детали для биогибридных роботов.
В EPFL предложили неожиданное решение для робототехники: использование пищевых отходов в качестве готовых экзоскелетов. В рамках концепции, которую авторы назвали «робототехникой мертвой материи», панцири лобстеров перерабатываются в функциональные механические узлы.
Процесс создания био-гибридов состоит из заполнения оболочки мягким эластомером, установку приводов и покрытия конструкции силиконом, а природная структура панциря обеспечивает идеальный баланс прочности и гибкости. Опытные образцы смогли поднимать вес до 500 граммов и выполнять захват помидора без повреждений.
Инновация решает сразу две задачи: снижает стоимость производства и уменьшает углеродный след, превращая отходы в ресурсы.
news.epfl.ch
@ai_machinelearning_big_data
#news #ai #ml
Компания опубликовала отчет «The state of enterprise AI», который указывает на масштабную трансформацию бизнес-процессов под влиянием ИИ. База корпоративных клиентов превысила 1 миллион организаций, а число Enterprise-мест за год выросло в 9 раз.
Главным трендом стало качественное изменение сценариев использования: потребление ризонинг-токенов подскочило на 320%. Это говорит о том, что бизнес перешел от простых чат-ботов к решению многоступенчатых инженерных и аналитических задач.
Статистика выявила четкую корреляцию между глубиной погружения в технологии и продуктивностью. Сотрудники, использующие GPT-5 Thinking и Deep Research, экономят более 10 часов в неделю, при этом потребляя в 8 раз больше ресурсов модели, чем обычные пользователи. Особенно заметен разрыв в разработке: там генерируют код через ИИ в 17 раз активнее.
openai.com
Model Context Protocol передан организации Agentic AI Foundation, действующей в структуре Linux Foundation. Это стратегический шаг: технология универсального стандарта для подключения ИИ-моделей к внешним базам данных и инструментам, теперь гарантированно останется нейтральной и открытой. Соучредителями нового фонда вместе с Anthropic выступили OpenAI и Block, а поддержку инициативе оказывают Google, Microsoft и AWS.
За год существования MCP добился массовости: протокол используют ChatGPT, Gemini, Claude и VS Code, а число загрузок SDK превысило 97 млн. Переход под эгиду Linux Foundation ставит MCP в один ряд с Kubernetes и PyTorch. Теперь развитие стандарта будет определяться сообществом, что важно для создания совместимой экосистемы ИИ-агентов.
anthropic.com
Власти КНР планируют ввести строгие ограничения на доступ и эксплуатацию Nvidia H200. Это решение готовится на фоне одобрения экспорта данных чипов со стороны администрации США. Несмотря на неожиданный «зеленый свет» из Вашингтона, Пекин демонстрирует осторожность в вопросах использования зарубежного железа.
Конкретные детали и механизмы новых барьеров пока не обнародованы. МИД Китая в ответ на запросы ограничился стандартным заявлением о важности взаимовыгодного сотрудничества, не прояснив судьбу поставок.
ft.com
Google официально подтвердила планы по запуску линейки смарт-очков с ИИ в 2026 году. Техногигант намерен потеснить Марка Цукерберга на этом рынке, объединив усилия с Samsung, Warby Parker и корейским фешн-брендом Gentle Monster.
В разработке находятся 2 типа устройств. Первый вариант - оправа с аудиосистемой для голосового взаимодействия с ИИ, второй - модель с встроенными дисплеями для навигации и перевода в реальном времени. Чтобы сохранить вес и габариты на уровне обычных очков, инженеры решили перенести основную вычислительную нагрузку на сопряженный смартфон.
cnbc.com
В EPFL предложили неожиданное решение для робототехники: использование пищевых отходов в качестве готовых экзоскелетов. В рамках концепции, которую авторы назвали «робототехникой мертвой материи», панцири лобстеров перерабатываются в функциональные механические узлы.
Процесс создания био-гибридов состоит из заполнения оболочки мягким эластомером, установку приводов и покрытия конструкции силиконом, а природная структура панциря обеспечивает идеальный баланс прочности и гибкости. Опытные образцы смогли поднимать вес до 500 граммов и выполнять захват помидора без повреждений.
Инновация решает сразу две задачи: снижает стоимость производства и уменьшает углеродный след, превращая отходы в ресурсы.
news.epfl.ch
@ai_machinelearning_big_data
#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 IR-SIM - открытый, легковесный Python-симулятор роботов для навигации, управления и обучения с подкреплением
IR-SIM даёт простой способ моделировать роботов, сенсоры и окружения без сложной инфраструктуры и дорогого железа. Подходит для учебных и исследовательских задач, быстрых экспериментов и прототипирования алгоритмов.
Что умеет:
• Симулировать роботов с разной кинематикой, сенсорами и поведением.
• Настраивать сцены через простые YAML-файлы без долгого программирования.
• Визуализировать результаты через встроенный визуализатор на matplotlib - удобно для отладки и понимания.
• Поддерживать столкновения и кастомные политики поведения объектов.
• Работать в мульти-агентных сценариях и проектах по Reinforcement Learning.
Подойдет, когда нужно быстро испытать алгоритм, обучить модель, протестировать динамику робота или создать учебный проект без тяжёлых фреймворков и симуляторов.
IR-SIM включает примеры использования, показывающие навигацию, взаимодействие объектов, визуализацию и сценарии RL - отличный старт для студентов, исследователей и разработчиков автономных систем.
https://github.com/hanruihua/ir-sim
@ai_machinelearning_big_data
#python #robotics #simulation #RL #reinforcementlearning #ai #opensource
IR-SIM даёт простой способ моделировать роботов, сенсоры и окружения без сложной инфраструктуры и дорогого железа. Подходит для учебных и исследовательских задач, быстрых экспериментов и прототипирования алгоритмов.
Что умеет:
• Симулировать роботов с разной кинематикой, сенсорами и поведением.
• Настраивать сцены через простые YAML-файлы без долгого программирования.
• Визуализировать результаты через встроенный визуализатор на matplotlib - удобно для отладки и понимания.
• Поддерживать столкновения и кастомные политики поведения объектов.
• Работать в мульти-агентных сценариях и проектах по Reinforcement Learning.
Подойдет, когда нужно быстро испытать алгоритм, обучить модель, протестировать динамику робота или создать учебный проект без тяжёлых фреймворков и симуляторов.
IR-SIM включает примеры использования, показывающие навигацию, взаимодействие объектов, визуализацию и сценарии RL - отличный старт для студентов, исследователей и разработчиков автономных систем.
https://github.com/hanruihua/ir-sim
@ai_machinelearning_big_data
#python #robotics #simulation #RL #reinforcementlearning #ai #opensource