Машинное обучение digest – Telegram
Машинное обучение digest
40 subscribers
1.29K photos
181 videos
648 links
Download Telegram
Главные ИИ новости

✔️ OpenAI наблюдает взрывной рост корпоративного ИИ.

Компания опубликовала отчет «The state of enterprise AI», который указывает на масштабную трансформацию бизнес-процессов под влиянием ИИ. База корпоративных клиентов превысила 1 миллион организаций, а число Enterprise-мест за год выросло в 9 раз.

Главным трендом стало качественное изменение сценариев использования: потребление ризонинг-токенов подскочило на 320%. Это говорит о том, что бизнес перешел от простых чат-ботов к решению многоступенчатых инженерных и аналитических задач.

Статистика выявила четкую корреляцию между глубиной погружения в технологии и продуктивностью. Сотрудники, использующие GPT-5 Thinking и Deep Research, экономят более 10 часов в неделю, при этом потребляя в 8 раз больше ресурсов модели, чем обычные пользователи. Особенно заметен разрыв в разработке: там генерируют код через ИИ в 17 раз активнее.
openai.com

✔️ Anthropic передала управление протоколом MCP в некоммерческий фонд.

Model Context Protocol передан организации Agentic AI Foundation, действующей в структуре Linux Foundation. Это стратегический шаг: технология универсального стандарта для подключения ИИ-моделей к внешним базам данных и инструментам, теперь гарантированно останется нейтральной и открытой. Соучредителями нового фонда вместе с Anthropic выступили OpenAI и Block, а поддержку инициативе оказывают Google, Microsoft и AWS.

За год существования MCP добился массовости: протокол используют ChatGPT, Gemini, Claude и VS Code, а число загрузок SDK превысило 97 млн. Переход под эгиду Linux Foundation ставит MCP в один ряд с Kubernetes и PyTorch. Теперь развитие стандарта будет определяться сообществом, что важно для создания совместимой экосистемы ИИ-агентов.
anthropic.com

✔️ Китай ограничит использование чипов Nvidia H200 вопреки разрешению на экспорт от США.

Власти КНР планируют ввести строгие ограничения на доступ и эксплуатацию Nvidia H200. Это решение готовится на фоне одобрения экспорта данных чипов со стороны администрации США. Несмотря на неожиданный «зеленый свет» из Вашингтона, Пекин демонстрирует осторожность в вопросах использования зарубежного железа.

Конкретные детали и механизмы новых барьеров пока не обнародованы. МИД Китая в ответ на запросы ограничился стандартным заявлением о важности взаимовыгодного сотрудничества, не прояснив судьбу поставок.
ft.com

✔️ Google выпустит умные очки с ИИ в 2026 году.

Google официально подтвердила планы по запуску линейки смарт-очков с ИИ в 2026 году. Техногигант намерен потеснить Марка Цукерберга на этом рынке, объединив усилия с Samsung, Warby Parker и корейским фешн-брендом Gentle Monster.

В разработке находятся 2 типа устройств. Первый вариант - оправа с аудиосистемой для голосового взаимодействия с ИИ, второй - модель с встроенными дисплеями для навигации и перевода в реальном времени. Чтобы сохранить вес и габариты на уровне обычных очков, инженеры решили перенести основную вычислительную нагрузку на сопряженный смартфон.
cnbc.com

✔️ Инженеры EPFL превратили панцири лобстеров в детали для биогибридных роботов.

В EPFL предложили неожиданное решение для робототехники: использование пищевых отходов в качестве готовых экзоскелетов. В рамках концепции, которую авторы назвали «робототехникой мертвой материи», панцири лобстеров перерабатываются в функциональные механические узлы.

Процесс создания био-гибридов состоит из заполнения оболочки мягким эластомером, установку приводов и покрытия конструкции силиконом, а природная структура панциря обеспечивает идеальный баланс прочности и гибкости. Опытные образцы смогли поднимать вес до 500 граммов и выполнять захват помидора без повреждений.

Инновация решает сразу две задачи: снижает стоимость производства и уменьшает углеродный след, превращая отходы в ресурсы.
news.epfl.ch


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
🦾 IR-SIM - открытый, легковесный Python-симулятор роботов для навигации, управления и обучения с подкреплением

IR-SIM даёт простой способ моделировать роботов, сенсоры и окружения без сложной инфраструктуры и дорогого железа. Подходит для учебных и исследовательских задач, быстрых экспериментов и прототипирования алгоритмов.

Что умеет:
• Симулировать роботов с разной кинематикой, сенсорами и поведением.
• Настраивать сцены через простые YAML-файлы без долгого программирования.
• Визуализировать результаты через встроенный визуализатор на matplotlib - удобно для отладки и понимания.
• Поддерживать столкновения и кастомные политики поведения объектов.
• Работать в мульти-агентных сценариях и проектах по Reinforcement Learning.

Подойдет, когда нужно быстро испытать алгоритм, обучить модель, протестировать динамику робота или создать учебный проект без тяжёлых фреймворков и симуляторов.

IR-SIM включает примеры использования, показывающие навигацию, взаимодействие объектов, визуализацию и сценарии RL - отличный старт для студентов, исследователей и разработчиков автономных систем.

https://github.com/hanruihua/ir-sim

@ai_machinelearning_big_data

#python #robotics #simulation #RL #reinforcementlearning #ai #opensource
🚀 Вышло крупное обновление Qwen3-Omni-Flash (версия 2025-12-01)

Что изменилось:

🎙️ Модель намного лучше ведёт разговоры с голосом и видео - общение звучит естественно и непрерывно
Теперь можно задавать характер ИИ через system prompts, например, стиль общения или роль
🗣️ Улучшена поддержка языков: 119 письменных и 19 голосовых
😊 Голоса звучат почти как настоящие люди

Где попробовать:

🎙️ В Qwen Chat - нажмите VoiceChat или VideoChat (правый нижний угол): http://chat.qwen.ai
📝 Подробности в блоге: https://qwen.ai/blog?id=qwen3-omni-20251201
🎧 Онлайн-демо: http://hf.co/spaces/Qwen/Qwen3-Omni-Demo
🎧 Второе демо: http://modelscope.cn/studios/Qwen/Qwen3-Omni-Demo
Realtime API: https://modelstudio.console.alibabacloud.com/?tab=doc#/doc/?type=model&url=2840914_2&modelId=qwen3-omni-flash-realtime-2025-12-01
📥 Offline API: https://modelstudio.console.alibabacloud.com/?tab=doc#/doc/?type=model&url=2840914_2&modelId=qwen3-omni-flash-2025-12-01

@ai_machinelearning_big_data


#Qwen #llm #ml
Главные ИИ Новости дня.

✔️ Марк Цукерберг сворачивает стратегию Open Source.

Компания радикально меняет вектор развития ИИ, отказываясь от идеологии открытости в пользу закрытых коммерческих продуктов. По данным источников, уже весной будет выпущена проприетарная модель Avocado, которая будет распространяться по закрытой лицензии для прямой монетизации.

Причиной резкого разворота стала неудача с Llama 4, которая не оправдала ожиданий руководства. Любопытно, что в процессе обучения Avocado использовались ответы моделей конкурентов: Google Gemma, GPT-OSS и Qwen.
bloomberg.com

✔️ Nvidia разработала механизм проверки геолокации своих чипов.

Компания создала ПО, которое определяет страну, где физически работают её ИИ-ускорители. Технология опирается на анализ сетевых задержек при обмене данными с серверами Nvidia, что позволяет установить геолокацию оборудования с точностью, достаточной для выявления нарушений санкционного режима.

Первыми поддержку новой функции получат системы на Blackwell. Инженеры также изучают варианты внедрения технологии для предыдущих поколений Hopper и Ampere. Nvidia позиционирует этот инструмент как опциональное ПО для инвентаризации и мониторинга состояния GPU-флота в дата-центрах, но фактически он отвечает на требования властей США о противодействию контрабанды железа в Китай.
reuters.com

✔️ Cursor получил режим Debug Mode.

Debug Mode — это новый агентный сценарий для борьбы с ошибками, которые обычно ставят языковые модели в тупик. Фишка инструмента в том, что он не пытается угадать решение, а действует методично: сначала выдвигает несколько гипотез о причинах сбоя, а затем временно внедряет в код инструкции для сбора runtime-логов.

Процесс отладки полностью интерактивен. После того как агент расставит «ловушки» в коде, разработчик должен воспроизвести ошибку в запущенном приложении. Получив реальные данные, Cursor локализует проблему и предлагает конкретный фикс без переписывания сотен строк кода. Если исправление работает, система автоматически вычищает весь черновой код, оставляя в проекте только финальный патч.
cursor.com

✔️ Microsoft превратила Copilot в автономного агента для автоматизации работы в Excel.

Microsoft открыла общий доступ к режиму Agent Mode в веб-версии Excel. Это обновление меняет взаимодействие с ИИ: Copilot теперь выполняет роль агента, способного самостоятельно выполнять многоступенчатые сценарии внутри книги.

В новом режиме агент может создавать таблицы с нуля, используя данные из веба, проводить сценарное моделирование «что - если», исправлять сложные формулы и строить сводные таблицы. Система показывает цепочку рассуждений и каждый шаг выполнения задачи.

Инструмент доступен подписчикам Microsoft 365 в веб-интерфейсе, а поддержка десктопных версий для Windows и Mac появится в январе.
techcommunity.microsoft.com

✔️ Adobe интегрировала Photoshop и Acrobat в интерфейс ChatGPT.

Компания запустила специализированные ИИ-агенты для редактирования медиафайлов и документов прямо в чат-боте. Новые инструменты поддерживают конкретные сценарии работы: Photoshop внутри чата умеет ретушировать области снимков и управлять контрастом и экспозицией. Acrobat - конвертировать, сжимать, объединять PDF-файлы и извлекать из них таблицы. Adobe Express используется для генерации и правки макетов.

Если возможностей чат-бота окажется недостаточно, проект можно бесшовно перенести в десктопный софт Adobe. Решение уже доступно в веб-версии, на десктопах и iOS. Функциональность предоставляется бесплатно: для активации достаточно загрузить файл и ввести текстовую команду с упоминанием нужного сервиса, например, «Adobe Photoshop, убери фон на этом изображении».
theverge.com


#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🚫 Nvidia опровергает сообщения о том, что её ограниченные Blackwell-чипы были тайно ввезены в Китай для DeepSeek.

Многие медиа утверждали, что тысячи GPU прошли через фиктивные дата-центры в Юго-Восточной Азии, были разобраны, переправлены в Китай и собраны заново, чтобы обойти правила США.

Nvidia заявляет, что у неё нет никаких доказательств или достоверных сигналов о подобной схеме, называет историю малореалистичной и подчёркивает, что компания проверяет каждую реальную наводку на возможную контрабанду.

cnbc.com/2025/12/10/nvidia-report-china-deepseek-ai-blackwell-chips.html
📘 Новая фундаментальная работа (65 страниц) от Stanford, Princeton, Harvard, University of Washington и других топ-университетов: впервые предлагается полная таксономия того, как современные агентные AI-системы адаптируются.

Главная идея:
Почти все сложные AI-агенты можно описать через всего 4 базовые типа адаптации - два связаны с обновлением самого агента, два других - с обновлением инструментов, которыми агент пользуется.

Что такое агентный AI:
Это большие модели, которые могут:
- вызывать инструменты,
- использовать память,
- выполнять задачи в несколько шагов.

Что такое адаптация:
Любое изменение агента или его инструментов на основе обратной связи, от проверки кода до человеческих оценок.

4 вида адаптации:

A1 - Agent Adaptation from Tool Execution
Агент обновляется на основе того, что произошло при вызове инструментов: код запустился или упал, поиск что-то нашёл или нет.

A2 — Agent Adaptation from Output Evaluation
Агент обновляется по оценкам качества своих итоговых действий: человеческим фидбеком, автопроверками ответов, качеством планов.

T1 - Tool Adaptation Independent of Agent
Инструменты обучаются отдельно, а агент остаётся “замороженным”. Например, заранее тренированный retriever или кодовый поисковик.

T2 - Tool Adaptation from Agent Signals
Агент остаётся фиксированным, но инструменты подстраиваются под его поведение — какие документы действительно помогли, какие подсказки улучшили выполнение задачи.

Почему это важно:
- Работа впервые системно упорядочивает методики адаптации агентных систем.
- Помогает понять компромиссы: стоимость обучения, гибкость, переносимость, модульные обновления.
- Показывает историю развития методов A1, A2 и T2, как они усложнялись и какие сигналы начали использовать.

Взгляд сводится к двум осям:
- можно менять агента,
- можно менять инструменты,
- а данные и фидбек служат топливом для обеих стратегий.

Эта таксономия помогает увидеть связи между десятками современных работ и понять, куда движутся агентные архитектуры нового поколения.

https://github.com/pat-jj/Awesome-Adaptation-of-Agentic-AI/blob/main/paper.pdf
🌟 "ИИ-отцы" получили главную ежегодную награду журнала Time «Человек года».

Их объединённый портрет, вдохновлённый культовой фотографией «Обед на небоскрёбе», украсил обложку.

В числе тех, кого редакция назвала главными архитекторами новой технологической эры: Илон Маск, Марк Цукерберг, Лиза Су (AMD), Джeнсен Хуанг (Nvidia), Сэм Альтман (OpenAI), Демис Хассабис (DeepMind), Дарио Амодей (Anthropic) и Фэй-Фэй Ли (World Labs).

Как отмечает издание, в 2025 году потенциал ИИ был полностью реализован, а эта группа визионеров окончательно утвердила наступление эпохи мыслящих машин.


@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 OpenAI официально запускает GPT-5.2!

Новая линейка моделей - Instant, Thinking и Pro - начинает раскатываться для пользователей Plus, Pro, Business и Enterprise. Завтра доступ получат Free и Go. Модели уже доступны и в API, включая режим Codex.

🧠 GPT-5.2 Thinking
Модель для сложной профессиональной работы.
— Sota результаты в рассуждении
— Существенный прогресс в создании и анализе таблиц
— Первые значимые улучшения в создании презентаций
На бенчмарке GDPval - тесте «зрелой» офисной работы для 44 профессий - это первая модель, достигшая уровня эксперта-человека.

GPT-5.2 Instant
Ориентирована на повседневную работу и обучение.
— Такой же разговорный стиль, как у 5.1
— Более чёткие объяснения темы
— Улучшенные пошаговые инструкции
— Сильное техническое письмо и перевод

🔬 GPT-5.2 Pro
Самая мощная модель для сложных вопросов.
— Лучшие результаты в программировании
— Лучшая модель для учёных и исследовательских команд

GPT-5.1 останется доступной платным пользователям ещё три месяца в статусе legacy.

https://openai.com/index/introducing-gpt-5-2/

@data_analysis_ml
📝 Главное из System Card GPT-5.2

— GPT-5.2 стала заметно честнее. В реальном продакшн-трафике случаи обмана у версии Thinking снизились до 1.6% против 7.7% у GPT-5.1. Модель гораздо реже врёт или искажает информацию о работе с инструментами.

— Модель лучше держит удар при провокациях. В специальных тестах, где её пытаются склонить к обману, показатель снизился с 11.8% до 5.4%. То есть GPT-5.2 устойчивее к манипулятивным подсказкам.

— Защита от prompt-injection стала сильнее. Instant и Thinking почти полностью проходят известные тесты (0.997 и 0.978). При этом OpenAI честно предупреждает: это проверка на известные атаки, а не гарантия защиты от новых.

— Большой скачок в чувствительных темах. Особенно в областях ментального здоровья и эмоциональной зависимости:
• mental health: 0.915 вместо 0.684
• emotional reliance: 0.955 вместо 0.785
Это один из самых заметных прогрессов по сравнению с GPT-5.1.

— GPT-5.2 Instant реже отказывается отвечать на запросы взрослых пользователей по «18+» темам. При этом правила не ослаблялись, а доступ для несовершеннолетних не расширялся.

— OpenAI внедряет автоматическое определение возраста. Для аккаунтов младше 18 лет будут жёстче ограничиваться чувствительные категории — сексуальный контент, романтические ролевые сценарии, сцены насилия.

— По фактической точности GPT-5.2 Thinking как минимум не хуже прошлых версий, а в некоторых сценариях лучше. С включённым браузингом уровень галлюцинаций опустился ниже 1% в пяти тематических областях.

— В рамках Preparedness Framework модель признана «высокоспособной» в биологии и химии. Включены дополнительные меры защиты. При этом OpenAI подчёркивает: нет доказательств, что модель может помочь новичку нанести серьёзный биологический вред, хотя она уже близка к этому порогу.

— В задачах самоулучшения ИИ GPT-5.2 Thinking стала лучшей моделью на бенчмарке OpenAI PRs, сопоставима с gpt-5.1-codex-max на MLE-bench и всего на 1 пункт уступает ему на PaperBench.

— Независимая проверка Apollo Research не выявила скрытого саботажа, попыток самосохранения или подрывного поведения. По их оценке, риск катастрофического вреда из-за «коварных» стратегий модели крайне низок.

GPT-5.2 показывает заметный прогресс в честности, устойчивости, безопасности и качестве ответов.

cdn.openai.com/pdf/3a4153c8-c748-4b71-8e31-aecbde944f8d/oai_5_2_system-card.pdf