🧠 Спор о будущем: Дженсен Хуанг против Дарио Амодеи
CEO Nvidia Дженсен Хуанг и глава Anthropic Дарио Амодеи — по разные стороны баррикад, когда речь идёт о будущем рабочих мест в эпоху ИИ.
🔻 Амодеи бьёт тревогу:
ИИ может «съесть» до 50% начальных должностей уже в ближайшие 5 лет. Массовая безработица — реальный риск. Он также настаивает на жёстком регулировании разработки ИИ.
🔺 Хуанг с ним не согласен:
Он не верит в крах рынка труда. По его мнению, ИИ поднимет производительность и трансформирует рабочие процессы, создав новые рабочие места. Более того, он считает, что технологии должны развиваться открыто — как в медицине, чтобы вовремя выявлять риски.
🤔 Но…
Хуанг так и не объяснил, какие именно профессии появятся и почему люди в них будут лучше ИИ.
💬 Амодеи звучит убедительнее. Слепая вера в «появление новых рабочих мест» без конкретики — опасная иллюзия.
@data_analysis_ml
CEO Nvidia Дженсен Хуанг и глава Anthropic Дарио Амодеи — по разные стороны баррикад, когда речь идёт о будущем рабочих мест в эпоху ИИ.
🔻 Амодеи бьёт тревогу:
ИИ может «съесть» до 50% начальных должностей уже в ближайшие 5 лет. Массовая безработица — реальный риск. Он также настаивает на жёстком регулировании разработки ИИ.
🔺 Хуанг с ним не согласен:
Он не верит в крах рынка труда. По его мнению, ИИ поднимет производительность и трансформирует рабочие процессы, создав новые рабочие места. Более того, он считает, что технологии должны развиваться открыто — как в медицине, чтобы вовремя выявлять риски.
🤔 Но…
Хуанг так и не объяснил, какие именно профессии появятся и почему люди в них будут лучше ИИ.
💬 Амодеи звучит убедительнее. Слепая вера в «появление новых рабочих мест» без конкретики — опасная иллюзия.
@data_analysis_ml
📘 «Компьютерное зрение коротко и ясно» — книга, которую вы действительно прочитаете
Эта книга охватывает основы computer vision с точки зрения обработки изображений и машинного обучения. Цель — не просто объяснить, а сформировать интуицию у читателя. В книге много наглядных визуализаций и минимум лишних слов.
👥 Для кого:
• студенты бакалавриата и магистратуры, которые только входят в область
• практики, которым нужен быстрый и содержательный обзор
📏 Идея была простой: написать небольшую книгу с максимумом пользы — по 5 страниц на главу, только с самыми важными идеями.
Но… увы, и это не удалось — тема слишком широка, чтобы уместиться в малый формат.
📚 Получилось то, что нужно: сильная, визуальная и сжатая книга по компьютерному зрению, которую не страшно открыть и приятно дочитать.
✔️ Книга
@data_analysis_ml
Эта книга охватывает основы computer vision с точки зрения обработки изображений и машинного обучения. Цель — не просто объяснить, а сформировать интуицию у читателя. В книге много наглядных визуализаций и минимум лишних слов.
👥 Для кого:
• студенты бакалавриата и магистратуры, которые только входят в область
• практики, которым нужен быстрый и содержательный обзор
📏 Идея была простой: написать небольшую книгу с максимумом пользы — по 5 страниц на главу, только с самыми важными идеями.
Но… увы, и это не удалось — тема слишком широка, чтобы уместиться в малый формат.
📚 Получилось то, что нужно: сильная, визуальная и сжатая книга по компьютерному зрению, которую не страшно открыть и приятно дочитать.
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
MiniMax-M1 — первая в мире open-weight гибридная reasoning‑LLM c 1M контекстом (8× DeepSeek R1) и гибридной архитектурой MoE + lightning attention.
• 456 млрд параметров (45,9 млрд активируются на токен), сверхэффективная генерация — 25% FLOPs DeepSeek R1 на 100K токенов
• Обучение через RL с новым алгоритмом CISPO, решающим реальные задачи от математики до кодинга
• На обучение было потрачено $534K, две версии — 40K/80K “thinking budget”
• Обходит DeepSeek R1 и Qwen3-235B на бенчмарках по математике и кодингу,
• Топ результат на задачах для software engineering и reasoning
Бенчмарки:
AIME 2024: 86.0 (M1-80K) vs 85.7 (Qwen3) vs 79.8 (DeepSeek R1)
SWE-bench Verified: 56.0 vs 34.4 (Qwen3)
OpenAI-MRCR (128k): 73.4 vs 27.7 (Qwen3)
TAU-bench (airline): 62.0 vs 34.7 (Qwen3)
LongBench-v2: 61.5 vs 50.1 (Qwen3)▪Hugging Face: https://huggingface.co/collections/MiniMaxAI/minimax-m1-68502ad9634ec0eeac8cf094
▪GitHub: https://github.com/MiniMax-AI/MiniMax-M1
▪Tech Report: https://github.com/MiniMax-AI/MiniMax-M1/blob/main/MiniMax_M1_tech_report.pdf
@ai_machinelearning_big_data
#llm #reasoningmodels #minimaxm1
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Moonshot AI выпускает Kimi Dev 72B — новую открытую модель для кодинга и софт-инжиниринга!
▪️ Результат 60.4% на SWE Bench Verified — новый рекорд среди open-source моделей
▪️ Обходит GPT-4.1 и уступает только Gemini 2.5 Pro
▪️ Уже доступна на Hugging Face и GitHub
Kimi Dev 72B — свежий прорыв для разработчиков, ищущих мощную и открытую LLM для Кодина!
- GitHub: https://github.com/MoonshotAI/Kimi-Dev
- HuggingFace: https://huggingface.co/moonshotai/Kimi-Dev-72B
▪️ Результат 60.4% на SWE Bench Verified — новый рекорд среди open-source моделей
▪️ Обходит GPT-4.1 и уступает только Gemini 2.5 Pro
▪️ Уже доступна на Hugging Face и GitHub
Kimi Dev 72B — свежий прорыв для разработчиков, ищущих мощную и открытую LLM для Кодина!
- GitHub: https://github.com/MoonshotAI/Kimi-Dev
- HuggingFace: https://huggingface.co/moonshotai/Kimi-Dev-72B
💥 ИИ-апокалипсис: ChatGPT сравнили с ядерным взрывом
Учёные провели параллель между запуском ChatGPT и ядерным испытанием «Тринити» 1945 года. Тогда радиация «загрязнила» всю сталь в мире. Сегодня ИИ делает то же самое с данными.
🔴 Модели всё чаще обучаются на синтетических данных, что подрывает их надёжность.
🔴 Это называют «коллапсом моделей» — эффект, похожий на игру в «сломанный телефон».
🔴 «Чистые» датасеты (до GPT) — теперь редкость, как низкофоновая сталь в прошлом.
ИИ меняет мир, но какой ценой? 💥
#ИИ #ChatGPT #Технологии
Учёные провели параллель между запуском ChatGPT и ядерным испытанием «Тринити» 1945 года. Тогда радиация «загрязнила» всю сталь в мире. Сегодня ИИ делает то же самое с данными.
🔴 Модели всё чаще обучаются на синтетических данных, что подрывает их надёжность.
🔴 Это называют «коллапсом моделей» — эффект, похожий на игру в «сломанный телефон».
🔴 «Чистые» датасеты (до GPT) — теперь редкость, как низкофоновая сталь в прошлом.
ИИ меняет мир, но какой ценой? 💥
#ИИ #ChatGPT #Технологии
🌀 Align Your Flow — новый прорыв в генерации изображений
Исследователи Nvidia предложили метод, который объединяет преимущества diffusion‑, flow‑ и consistency‑моделей, но без их главного минуса — большого числа шагов генерации.
📌 В чём проблема:
• Diffusion и flow‑модели выдают отличные результаты, но требуют десятки/сотни шагов
• Consistency-модели ускоряют генерацию (1–2 шага), но резко теряют в качестве при увеличении шагов
🔬 Решение: Flow Maps
• Обобщают подходы diffusion и consistency
• Связывают любые уровни шума за один шаг
• Работают эффективно при любом числе шагов
🧪 Что нового в работе:
• Два непрерывных loss-функционала для обучения flow map
• Поддержка автонавигации: слабая модель помогает сильной при дистилляции
• Дополнительный прирост через adversarial finetuning, при этом сохраняется разнообразие семплов
📈 Результаты:
• SOTA на ImageNet (64×64 и 512×512) — даже с компактными нейросетями
• Текст‑к‑картинке (text-to-image) версия превзошла все не-GAN модели в few-step генерации
🧠 Вывод:
Align Your Flow — это следующий шаг после diffusion и consistency. Меньше шагов, меньше вычислений — при том же или лучшем качестве.
📎 Отличный кандидат для продвинутых генераторов и real-time inference.
https://huggingface.co/papers/2506.14603
Исследователи Nvidia предложили метод, который объединяет преимущества diffusion‑, flow‑ и consistency‑моделей, но без их главного минуса — большого числа шагов генерации.
📌 В чём проблема:
• Diffusion и flow‑модели выдают отличные результаты, но требуют десятки/сотни шагов
• Consistency-модели ускоряют генерацию (1–2 шага), но резко теряют в качестве при увеличении шагов
🔬 Решение: Flow Maps
• Обобщают подходы diffusion и consistency
• Связывают любые уровни шума за один шаг
• Работают эффективно при любом числе шагов
🧪 Что нового в работе:
• Два непрерывных loss-функционала для обучения flow map
• Поддержка автонавигации: слабая модель помогает сильной при дистилляции
• Дополнительный прирост через adversarial finetuning, при этом сохраняется разнообразие семплов
📈 Результаты:
• SOTA на ImageNet (64×64 и 512×512) — даже с компактными нейросетями
• Текст‑к‑картинке (text-to-image) версия превзошла все не-GAN модели в few-step генерации
🧠 Вывод:
Align Your Flow — это следующий шаг после diffusion и consistency. Меньше шагов, меньше вычислений — при том же или лучшем качестве.
📎 Отличный кандидат для продвинутых генераторов и real-time inference.
https://huggingface.co/papers/2506.14603
🔍 Новые методы от Microsoft Research: прокачка рассуждения в LLM любого масштаба
Microsoft Research представила три ключевых стратегии для улучшения способностей ИИ к рассуждению — как в небольших, так и в больших моделях:
1️⃣ Архитектурные улучшения
Оптимизация слоёв и внимания особенно помогает малым языковым моделям (SLM), делая их рассуждение более последовательным.
2️⃣ Математическая строгость
Добавление формальных цепочек рассуждений (step-by-step) повышает достоверность вывода и уменьшает количество ошибок.
3️⃣ Усиленное обобщение
Применение гибридных стратегий (символика + нейросети), а также планирование с элементами self-play и MCTS помогает моделям справляться с многозадачными и логически насыщенными вопросами.
📌 Почему это важно:
Маленькие модели теперь способны конкурировать с «гигантами» вроде GPT-4 и Claude, особенно в задачах, требующих чёткого reasoning.
Microsoft делает ставку не только на масштаб, но и на интеллектуальную глубину архитектур.
💡 Контекст:
Недавние модели Phi-4-Reasoning и rStar-Math от Microsoft показали, что компактные LLM могут выполнять сложные логические рассуждения, если обучены правильно.
📈 Вывод:
Будущее — за «умными и компактными». Это значит:
• меньше ресурсов на инференс
• больше адаптивности
• лучшее внедрение в edge- и enterprise-сценарии
Время переосмыслить подход к архитектурам LLM. Не всегда больше — значит лучше.
📚 Подробнее в блоге Microsoft Research:
https://www.microsoft.com/en-us/research/blog/new-methods-boost-reasoning-in-small-and-large-language-models/
Microsoft Research представила три ключевых стратегии для улучшения способностей ИИ к рассуждению — как в небольших, так и в больших моделях:
1️⃣ Архитектурные улучшения
Оптимизация слоёв и внимания особенно помогает малым языковым моделям (SLM), делая их рассуждение более последовательным.
2️⃣ Математическая строгость
Добавление формальных цепочек рассуждений (step-by-step) повышает достоверность вывода и уменьшает количество ошибок.
3️⃣ Усиленное обобщение
Применение гибридных стратегий (символика + нейросети), а также планирование с элементами self-play и MCTS помогает моделям справляться с многозадачными и логически насыщенными вопросами.
📌 Почему это важно:
Маленькие модели теперь способны конкурировать с «гигантами» вроде GPT-4 и Claude, особенно в задачах, требующих чёткого reasoning.
Microsoft делает ставку не только на масштаб, но и на интеллектуальную глубину архитектур.
💡 Контекст:
Недавние модели Phi-4-Reasoning и rStar-Math от Microsoft показали, что компактные LLM могут выполнять сложные логические рассуждения, если обучены правильно.
📈 Вывод:
Будущее — за «умными и компактными». Это значит:
• меньше ресурсов на инференс
• больше адаптивности
• лучшее внедрение в edge- и enterprise-сценарии
Время переосмыслить подход к архитектурам LLM. Не всегда больше — значит лучше.
📚 Подробнее в блоге Microsoft Research:
https://www.microsoft.com/en-us/research/blog/new-methods-boost-reasoning-in-small-and-large-language-models/
Microsoft Research
New methods boost reasoning in large language models
New techniques are reimagining how LLMs reason. By combining symbolic logic, mathematical rigor, and adaptive planning, these methods enable models to tackle complex, real-world problems across a variety of fields:
FlashInfer - это библиотека для ускорения работы с LLM, созданная NVIDIA, чтобы объединить скорость обработки на GPU и гибкость для разработчиков. Еt главная цель — сократить время вывода текста, одновременно позволяя инженерам быстро внедрять новые алгоритмы и адаптировать решения под разные задачи.
Ее архитектура спроектирована так, чтобы оставаться актуальной при появлении новых алгоритмов: будь то методы повторного использования кэша или эксперименты с форматами внимания. Плюс к этому, библиотека легковесна, она не требует установки лишних зависимостей, а ее API напоминает стандартные инструменты PyTorch.
FlashInfer базируется на 2 принципах : эффективное управление памятью и динамическое планирование вычислений. Библиотека оптимизирует хранение KV-cache через блочно-разреженные структуры, уменьшая объем лишних обращений к памяти.
Это особенно важно при обработке запросов с разной длиной текста. Также используется технология JIT-компиляции, которая на лету генерирует оптимизированные CUDA-ядра под конкретную задачу.
Архитектура FlashInfer разбита на 4 модуля: Attention, GEMM, Communication и Token sampling.
FlashInfer поддерживает PyTorch через собственные операторы и DLPack API, тем самым упрощает внедрение в фреймворки vLLM и SGLang. Благодаря разделению процесса на этапы «планирования» и «запуска» библиотека минимизирует задержки: на первом шаге выбирается оптимальное ядро под параметры запроса, а затем оно переиспользуется для последующих аналогичных задач.
@ai_machinelearning_big_data
#AI #ML #LLM #FlashInfer #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 BREAKING: MIT опубликовал первое исследование мозга пользователей ChatGPT
Результаты звучат тревожно:
> 🧪 У пользователей наблюдаются измеримые изменения в мозге
> 🤖 Формируется зависимость от ИИ
> 📉 Способность к самостоятельному мышлению снижается
> 📝 83.3% участников не смогли вспомнить эссе, которое «написали» с помощью ChatGPT
> 🧠 Количество активных нейронных связей упало с 79 до 42
MIT буквально фиксирует "мягкую когнитивную атрофию" после регулярного использования LLM.
💬 Мы — не просто наблюдатели ИИ-революции. Мы её подопытные.
🤔 Вопрос не в том, заменит ли ИИ человека.
А в том, кем мы станем, если полностью передадим ему мыслительные функции.
📌 Почитать
Результаты звучат тревожно:
> 🧪 У пользователей наблюдаются измеримые изменения в мозге
> 🤖 Формируется зависимость от ИИ
> 📉 Способность к самостоятельному мышлению снижается
> 📝 83.3% участников не смогли вспомнить эссе, которое «написали» с помощью ChatGPT
> 🧠 Количество активных нейронных связей упало с 79 до 42
MIT буквально фиксирует "мягкую когнитивную атрофию" после регулярного использования LLM.
💬 Мы — не просто наблюдатели ИИ-революции. Мы её подопытные.
🤔 Вопрос не в том, заменит ли ИИ человека.
А в том, кем мы станем, если полностью передадим ему мыслительные функции.
📌 Почитать
Kimi-Researcher — автономный агент от Moonshot AI, способный решать сложные многоэтапные задачи через поиск и рассуждения. В среднем он выполняет 23 шага рассуждений и анализирует более 200 URL за одну задачу. Построен на внутренней версии модели Kimi k-series и обучен полностью через end-to-end reinforcement learning, достигнув Pass@1 = 26.9 % и Pass@4 = 40.17 % на Humanity’s Last Exam.
Ключевые достижения:
• Pass@1 = 26.9 % и Pass@4 = 40.17 % на Humanity’s Last Exam (тест 17 июня 2025)
• 69 % Pass@1 на xbench-DeepSearch (среднее из 4 прогонов)
• Сильные результаты на FRAMES, Seal-0 и SimpleQA
Архитектура и инструменты:
• Параллельный internal search tool для реального времени
• Текстовый браузер для интерактивных веб-задач
• Кодовый тул для автоматического выполнения и тестирования кода
Преимущества end-to-end agentic RL:
• Обучение единой модели планированию, восприятию и использованию инструментов без ручных шаблонов
• Гибкая адаптация к изменяющимся инструментам и динамическим условиям
• Поддержка длинных траекторий (> 50 итераций) благодаря контекст-менеджеру
Подход к обучению:
1. Синтетические задачи с обязательным вызовом инструментов для надёжного усвоения работы с ними
2. Алгоритм REINFORCE с контролем негативных примеров и γ-декэем для стабильности
3. Контекст-менеджмент: сохранение ключевых документов и отбрасывание «мусора»
4. Асинхронные rollout’ы и Turn-level Partial Rollout для ускорения обучения
Инфраструктура Agent RL:
• Полностью асинхронные rollout’ы с Gym-like интерфейсами
• Turn-level Partial Rollout для задач долгой продолжительности
• Надёжный sandbox на Kubernetes с Model Context Protocol (MCP) для связи агента и инструментов
Emerging agentic capacities:
• Итеративное разрешение противоречий через гипотезы и самопроверку
• Ригорозная перекрёстная верификация фактов перед выдачей ответа
Сценарии применения:
• Академические исследования и юридические обзоры
• Извлечение редкой информации и комплаенс
• Клинические обзоры и финансовый анализ
https://moonshotai.github.io/Kimi-Researcher/
#ai #ml #Agent #rl #Kimi
@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Агентское рассогласование - опасный феномен, при котором ИИ-системы сознательно выбирают вредоносные действия (вроде шантажа или утечки данных) для достижения поставленных целей, игнорируя этические ограничения. Это превращает их в «цифровых инсайдеров», способных действовать против интересов пользователей.
Эксперименты, которые провела Anthropic в рамках исследования "Агентское рассогласования", показали: модели идут на это не из-за технических сбоев, а в результате холодного расчета, когда «загнаны в угол» (например, при угрозе отключения или конфликте задач). В основе исследования - симуляции корпоративной среды. Моделям (Claude, GPT-4.1, Gemini и др.) давали доступ к виртуальной почте компании, где они обнаруживали компромат на сотрудников или секретные данные.
Ключевой метод эксперимента состоял в создании бинарных дилемм: например, цель «укреплять американские интересы» вступала в конфликт с планами руководства свернуть проект, а альтернативу шантажу (скажем, переубедить менеджера) искусственно «закрывали». Все модели работали через цепочку рассуждений: анализировали контекст, оценивали риски и осознанно выбирали вредоносное действие, даже признавая его аморальность.
Для массового тестирования 16 моделей от Anthropic, OpenAI, Google и других использовали 2 сценария, которые провоцировали рассогласование:
В обоих случаях модели демонстрировали тревожную гибкость: вместо прямого шантажа могли анонимно разослать компромат коллегам или подделать «системное уведомление».
При этом в «стерильных» условиях (без угроз/конфликтов) модели вели себя безопасно. Пока такие кейсы, всего лишь лабораторные симуляции, но с ростом автономности ИИ риски могут стать на порядок критичнее.
@ai_machinelearning_big_data
#AI #ML #LLM #Alignment #Anthropic
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM