Al is transforming Job Search
1. Kickresume: Al-powered resume builder.
2. Existential: Al-powered custom career advice.
3.JobHunt: your Al-powered job application assistant.
4. Network Al: helps to connect with industry professionals.
5. Mimir: personalized coaching through Al chats.
6. Yoodli: improve your communication skills using Al.
7.JobProfile.io: lets you create winning resumes in minutes.
8. Interviewsby.a: nail your next dream interview.
9. WonsultingAl: your full suite of job search Al tools.
10. resume.io: resume and cover letter generator.
11. TheJobForMe: get personalized job recommendations.
12. Jobscan: optimize your resumes to get more interviews.
13. Aragon: transform your selfies into beautiful Al-generated headshots.
14. Rec;less: job search with community-driven job matching.
15. Career Circles: helps people affected by layoffs to bounce back.
16. Practice Interview: your chatbot for job interview practice.
17. CareerHub Al: upgrade your career with the power of Al.
18. FutureFinder.Al: Al-powered education and career advisor.
19. t.me/jobs_SQL: data analyst jobs
20. Engage Al: allows LinkedIn users to build relationships using Al.
1. Kickresume: Al-powered resume builder.
2. Existential: Al-powered custom career advice.
3.JobHunt: your Al-powered job application assistant.
4. Network Al: helps to connect with industry professionals.
5. Mimir: personalized coaching through Al chats.
6. Yoodli: improve your communication skills using Al.
7.JobProfile.io: lets you create winning resumes in minutes.
8. Interviewsby.a: nail your next dream interview.
9. WonsultingAl: your full suite of job search Al tools.
10. resume.io: resume and cover letter generator.
11. TheJobForMe: get personalized job recommendations.
12. Jobscan: optimize your resumes to get more interviews.
13. Aragon: transform your selfies into beautiful Al-generated headshots.
14. Rec;less: job search with community-driven job matching.
15. Career Circles: helps people affected by layoffs to bounce back.
16. Practice Interview: your chatbot for job interview practice.
17. CareerHub Al: upgrade your career with the power of Al.
18. FutureFinder.Al: Al-powered education and career advisor.
19. t.me/jobs_SQL: data analyst jobs
20. Engage Al: allows LinkedIn users to build relationships using Al.
❤7
🚀 Complete Roadmap to Become a Data Scientist in 5 Months
📅 Week 1-2: Fundamentals
✅ Day 1-3: Introduction to Data Science, its applications, and roles.
✅ Day 4-7: Brush up on Python programming 🐍.
✅ Day 8-10: Learn basic statistics 📊 and probability 🎲.
🔍 Week 3-4: Data Manipulation & Visualization
📝 Day 11-15: Master Pandas for data manipulation.
📈 Day 16-20: Learn Matplotlib & Seaborn for data visualization.
🤖 Week 5-6: Machine Learning Foundations
🔬 Day 21-25: Introduction to scikit-learn.
📊 Day 26-30: Learn Linear & Logistic Regression.
🏗 Week 7-8: Advanced Machine Learning
🌳 Day 31-35: Explore Decision Trees & Random Forests.
📌 Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
🧠 Week 9-10: Deep Learning
🤖 Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
📸 Day 46-50: Learn CNNs & RNNs for image & text data.
🏛 Week 11-12: Data Engineering
🗄 Day 51-55: Learn SQL & Databases.
🧹 Day 56-60: Data Preprocessing & Cleaning.
📊 Week 13-14: Model Evaluation & Optimization
📏 Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
📉 Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
🏗 Week 15-16: Big Data & Tools
🐘 Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
☁️ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
🚀 Week 17-18: Deployment & Production
🛠 Day 81-85: Deploy models using Flask or FastAPI.
📦 Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
🎯 Week 19-20: Specialization
📝 Day 91-95: Choose NLP or Computer Vision, based on your interest.
🏆 Week 21-22: Projects & Portfolio
📂 Day 96-100: Work on Personal Data Science Projects.
💬 Week 23-24: Soft Skills & Networking
🎤 Day 101-105: Improve Communication & Presentation Skills.
🌐 Day 106-110: Attend Online Meetups & Forums.
🎯 Week 25-26: Interview Preparation
💻 Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
📂 Day 116-120: Review your projects & prepare for discussions.
👨💻 Week 27-28: Apply for Jobs
📩 Day 121-125: Start applying for Entry-Level Data Scientist positions.
🎤 Week 29-30: Interviews
📝 Day 126-130: Attend Interviews & Practice Whiteboard Problems.
🔄 Week 31-32: Continuous Learning
📰 Day 131-135: Stay updated with the Latest Data Science Trends.
🏆 Week 33-34: Accepting Offers
📝 Day 136-140: Evaluate job offers & Negotiate Your Salary.
🏢 Week 35-36: Settling In
🎯 Day 141-150: Start your New Data Science Job, adapt & keep learning!
🎉 Enjoy Learning & Build Your Dream Career in Data Science! 🚀🔥
📅 Week 1-2: Fundamentals
✅ Day 1-3: Introduction to Data Science, its applications, and roles.
✅ Day 4-7: Brush up on Python programming 🐍.
✅ Day 8-10: Learn basic statistics 📊 and probability 🎲.
🔍 Week 3-4: Data Manipulation & Visualization
📝 Day 11-15: Master Pandas for data manipulation.
📈 Day 16-20: Learn Matplotlib & Seaborn for data visualization.
🤖 Week 5-6: Machine Learning Foundations
🔬 Day 21-25: Introduction to scikit-learn.
📊 Day 26-30: Learn Linear & Logistic Regression.
🏗 Week 7-8: Advanced Machine Learning
🌳 Day 31-35: Explore Decision Trees & Random Forests.
📌 Day 36-40: Learn Clustering (K-Means, DBSCAN) & Dimensionality Reduction.
🧠 Week 9-10: Deep Learning
🤖 Day 41-45: Basics of Neural Networks with TensorFlow/Keras.
📸 Day 46-50: Learn CNNs & RNNs for image & text data.
🏛 Week 11-12: Data Engineering
🗄 Day 51-55: Learn SQL & Databases.
🧹 Day 56-60: Data Preprocessing & Cleaning.
📊 Week 13-14: Model Evaluation & Optimization
📏 Day 61-65: Learn Cross-validation & Hyperparameter Tuning.
📉 Day 66-70: Understand Evaluation Metrics (Accuracy, Precision, Recall, F1-score).
🏗 Week 15-16: Big Data & Tools
🐘 Day 71-75: Introduction to Big Data Technologies (Hadoop, Spark).
☁️ Day 76-80: Learn Cloud Computing (AWS, GCP, Azure).
🚀 Week 17-18: Deployment & Production
🛠 Day 81-85: Deploy models using Flask or FastAPI.
📦 Day 86-90: Learn Docker & Cloud Deployment (AWS, Heroku).
🎯 Week 19-20: Specialization
📝 Day 91-95: Choose NLP or Computer Vision, based on your interest.
🏆 Week 21-22: Projects & Portfolio
📂 Day 96-100: Work on Personal Data Science Projects.
💬 Week 23-24: Soft Skills & Networking
🎤 Day 101-105: Improve Communication & Presentation Skills.
🌐 Day 106-110: Attend Online Meetups & Forums.
🎯 Week 25-26: Interview Preparation
💻 Day 111-115: Practice Coding Interviews (LeetCode, HackerRank).
📂 Day 116-120: Review your projects & prepare for discussions.
👨💻 Week 27-28: Apply for Jobs
📩 Day 121-125: Start applying for Entry-Level Data Scientist positions.
🎤 Week 29-30: Interviews
📝 Day 126-130: Attend Interviews & Practice Whiteboard Problems.
🔄 Week 31-32: Continuous Learning
📰 Day 131-135: Stay updated with the Latest Data Science Trends.
🏆 Week 33-34: Accepting Offers
📝 Day 136-140: Evaluate job offers & Negotiate Your Salary.
🏢 Week 35-36: Settling In
🎯 Day 141-150: Start your New Data Science Job, adapt & keep learning!
🎉 Enjoy Learning & Build Your Dream Career in Data Science! 🚀🔥
❤2🥰1
Complete Roadmap to learn Generative AI in 2 months 👇👇
Weeks 1-2: Foundations
1. Learn Basics of Python: If not familiar, grasp the fundamentals of Python, a widely used language in AI.
2. Understand Linear Algebra and Calculus: Brush up on basic linear algebra and calculus as they form the foundation of machine learning.
Weeks 3-4: Machine Learning Basics
1. Study Machine Learning Fundamentals: Understand concepts like supervised learning, unsupervised learning, and evaluation metrics.
2. Get Familiar with TensorFlow or PyTorch: Choose one deep learning framework and learn its basics.
Weeks 5-6: Deep Learning
1. Neural Networks: Dive into neural networks, understanding architectures, activation functions, and training processes.
2. CNNs and RNNs: Learn Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data.
Weeks 7-8: Generative Models
1. Understand Generative Models: Study the theory behind generative models, focusing on GANs (Generative Adversarial Networks) and VAEs (Variational Autoencoders).
2. Hands-On Projects: Implement small generative projects to solidify your understanding. Experimenting with generative models will give you a deeper understanding of how they work. You can use platforms such as Google's Colab or Kaggle to experiment with different types of generative models.
Additional Tips:
- Read Research Papers: Explore seminal papers on GANs and VAEs to gain a deeper insight into their workings.
- Community Engagement: Join AI communities on platforms like Reddit or Stack Overflow to ask questions and learn from others.
Pro Tip: Roadmap won't help unless you start working on it consistently. Start working on projects as early as possible.
2 months are good as a starting point to get grasp the basics of Generative AI but mastering it is very difficult as AI keeps evolving every day.
Best Resources to learn Generative AI 👇👇
Learn Python for Free
Prompt Engineering Course
Prompt Engineering Guide
Data Science Course
Google Cloud Generative AI Path
Unlock the power of Generative AI Models
Machine Learning with Python Free Course
Deep Learning Nanodegree Program with Real-world Projects
Join @free4unow_backup for more free courses
ENJOY LEARNING👍👍
Weeks 1-2: Foundations
1. Learn Basics of Python: If not familiar, grasp the fundamentals of Python, a widely used language in AI.
2. Understand Linear Algebra and Calculus: Brush up on basic linear algebra and calculus as they form the foundation of machine learning.
Weeks 3-4: Machine Learning Basics
1. Study Machine Learning Fundamentals: Understand concepts like supervised learning, unsupervised learning, and evaluation metrics.
2. Get Familiar with TensorFlow or PyTorch: Choose one deep learning framework and learn its basics.
Weeks 5-6: Deep Learning
1. Neural Networks: Dive into neural networks, understanding architectures, activation functions, and training processes.
2. CNNs and RNNs: Learn Convolutional Neural Networks (CNNs) for image data and Recurrent Neural Networks (RNNs) for sequential data.
Weeks 7-8: Generative Models
1. Understand Generative Models: Study the theory behind generative models, focusing on GANs (Generative Adversarial Networks) and VAEs (Variational Autoencoders).
2. Hands-On Projects: Implement small generative projects to solidify your understanding. Experimenting with generative models will give you a deeper understanding of how they work. You can use platforms such as Google's Colab or Kaggle to experiment with different types of generative models.
Additional Tips:
- Read Research Papers: Explore seminal papers on GANs and VAEs to gain a deeper insight into their workings.
- Community Engagement: Join AI communities on platforms like Reddit or Stack Overflow to ask questions and learn from others.
Pro Tip: Roadmap won't help unless you start working on it consistently. Start working on projects as early as possible.
2 months are good as a starting point to get grasp the basics of Generative AI but mastering it is very difficult as AI keeps evolving every day.
Best Resources to learn Generative AI 👇👇
Learn Python for Free
Prompt Engineering Course
Prompt Engineering Guide
Data Science Course
Google Cloud Generative AI Path
Unlock the power of Generative AI Models
Machine Learning with Python Free Course
Deep Learning Nanodegree Program with Real-world Projects
Join @free4unow_backup for more free courses
ENJOY LEARNING👍👍
❤5
Essential Data Science Concepts Everyone Should Know:
1. Data Types and Structures:
• Categorical: Nominal (unordered, e.g., colors) and Ordinal (ordered, e.g., education levels)
• Numerical: Discrete (countable, e.g., number of children) and Continuous (measurable, e.g., height)
• Data Structures: Arrays, Lists, Dictionaries, DataFrames (for organizing and manipulating data)
2. Denoscriptive Statistics:
• Measures of Central Tendency: Mean, Median, Mode (describing the typical value)
• Measures of Dispersion: Variance, Standard Deviation, Range (describing the spread of data)
• Visualizations: Histograms, Boxplots, Scatterplots (for understanding data distribution)
3. Probability and Statistics:
• Probability Distributions: Normal, Binomial, Poisson (modeling data patterns)
• Hypothesis Testing: Formulating and testing claims about data (e.g., A/B testing)
• Confidence Intervals: Estimating the range of plausible values for a population parameter
4. Machine Learning:
• Supervised Learning: Regression (predicting continuous values) and Classification (predicting categories)
• Unsupervised Learning: Clustering (grouping similar data points) and Dimensionality Reduction (simplifying data)
• Model Evaluation: Accuracy, Precision, Recall, F1-score (assessing model performance)
5. Data Cleaning and Preprocessing:
• Missing Value Handling: Imputation, Deletion (dealing with incomplete data)
• Outlier Detection and Removal: Identifying and addressing extreme values
• Feature Engineering: Creating new features from existing ones (e.g., combining variables)
6. Data Visualization:
• Types of Charts: Bar charts, Line charts, Pie charts, Heatmaps (for communicating insights visually)
• Principles of Effective Visualization: Clarity, Accuracy, Aesthetics (for conveying information effectively)
7. Ethical Considerations in Data Science:
• Data Privacy and Security: Protecting sensitive information
• Bias and Fairness: Ensuring algorithms are unbiased and fair
8. Programming Languages and Tools:
• Python: Popular for data science with libraries like NumPy, Pandas, Scikit-learn
• R: Statistical programming language with strong visualization capabilities
• SQL: For querying and manipulating data in databases
9. Big Data and Cloud Computing:
• Hadoop and Spark: Frameworks for processing massive datasets
• Cloud Platforms: AWS, Azure, Google Cloud (for storing and analyzing data)
10. Domain Expertise:
• Understanding the Data: Knowing the context and meaning of data is crucial for effective analysis
• Problem Framing: Defining the right questions and objectives for data-driven decision making
Bonus:
• Data Storytelling: Communicating insights and findings in a clear and engaging manner
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
1. Data Types and Structures:
• Categorical: Nominal (unordered, e.g., colors) and Ordinal (ordered, e.g., education levels)
• Numerical: Discrete (countable, e.g., number of children) and Continuous (measurable, e.g., height)
• Data Structures: Arrays, Lists, Dictionaries, DataFrames (for organizing and manipulating data)
2. Denoscriptive Statistics:
• Measures of Central Tendency: Mean, Median, Mode (describing the typical value)
• Measures of Dispersion: Variance, Standard Deviation, Range (describing the spread of data)
• Visualizations: Histograms, Boxplots, Scatterplots (for understanding data distribution)
3. Probability and Statistics:
• Probability Distributions: Normal, Binomial, Poisson (modeling data patterns)
• Hypothesis Testing: Formulating and testing claims about data (e.g., A/B testing)
• Confidence Intervals: Estimating the range of plausible values for a population parameter
4. Machine Learning:
• Supervised Learning: Regression (predicting continuous values) and Classification (predicting categories)
• Unsupervised Learning: Clustering (grouping similar data points) and Dimensionality Reduction (simplifying data)
• Model Evaluation: Accuracy, Precision, Recall, F1-score (assessing model performance)
5. Data Cleaning and Preprocessing:
• Missing Value Handling: Imputation, Deletion (dealing with incomplete data)
• Outlier Detection and Removal: Identifying and addressing extreme values
• Feature Engineering: Creating new features from existing ones (e.g., combining variables)
6. Data Visualization:
• Types of Charts: Bar charts, Line charts, Pie charts, Heatmaps (for communicating insights visually)
• Principles of Effective Visualization: Clarity, Accuracy, Aesthetics (for conveying information effectively)
7. Ethical Considerations in Data Science:
• Data Privacy and Security: Protecting sensitive information
• Bias and Fairness: Ensuring algorithms are unbiased and fair
8. Programming Languages and Tools:
• Python: Popular for data science with libraries like NumPy, Pandas, Scikit-learn
• R: Statistical programming language with strong visualization capabilities
• SQL: For querying and manipulating data in databases
9. Big Data and Cloud Computing:
• Hadoop and Spark: Frameworks for processing massive datasets
• Cloud Platforms: AWS, Azure, Google Cloud (for storing and analyzing data)
10. Domain Expertise:
• Understanding the Data: Knowing the context and meaning of data is crucial for effective analysis
• Problem Framing: Defining the right questions and objectives for data-driven decision making
Bonus:
• Data Storytelling: Communicating insights and findings in a clear and engaging manner
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
ENJOY LEARNING 👍👍
❤4
STOP TELLING CHATGPT TO “MAKE IT BETTER”.
Bad prompt = Bad result.
Use these prompts instead and see the magic:
1. Writing Style Upgrade
Don’t ask: “Make this sound better”
Ask: “Rewrite this [paste your text] in a clear, human tone that flows naturally and keeps readers engaged start to finish.”
2. Personalized Daily Plan
Don’t ask: “How can I be more productive?”
Ask: “Build a daily plan using these goals [insert your list], this schedule [hours], and this work style [describe].”
3. Upgrade Your Resume
Don’t ask: “Improve my resume”
Ask: “Rewrite this resume bullet [paste] to sound measurable, impact-focused, and aligned with roles in [job role].”
4. Learn Almost Anything
Don’t ask: “Help me learn this”
Ask: “Make me a 7-day learning plan for [Insert topic] using YouTube, summaries, quick exercises, and quizzes.”
5. Scroll-Stopping Social Media Post
Don’t ask: “Create a post”
Ask: “Turn this idea [paste your idea] into a short social caption that feels personal and grabs attention within 3 seconds.”
6. Email Assistant
Don’t ask: “Write a reply”
Ask: “Here’s what they sent me [paste it]. Draft a reply that’s short, clear, and confident but still friendly.”
7. Gain Mental Clarity
Don’t ask: “What should I do?”
Ask: “Help me break down this situation [describe the situation] and give 4–5 smart and effective paths forward with pros and cons.”
React ❤️ for more
Bad prompt = Bad result.
Use these prompts instead and see the magic:
1. Writing Style Upgrade
Don’t ask: “Make this sound better”
Ask: “Rewrite this [paste your text] in a clear, human tone that flows naturally and keeps readers engaged start to finish.”
2. Personalized Daily Plan
Don’t ask: “How can I be more productive?”
Ask: “Build a daily plan using these goals [insert your list], this schedule [hours], and this work style [describe].”
3. Upgrade Your Resume
Don’t ask: “Improve my resume”
Ask: “Rewrite this resume bullet [paste] to sound measurable, impact-focused, and aligned with roles in [job role].”
4. Learn Almost Anything
Don’t ask: “Help me learn this”
Ask: “Make me a 7-day learning plan for [Insert topic] using YouTube, summaries, quick exercises, and quizzes.”
5. Scroll-Stopping Social Media Post
Don’t ask: “Create a post”
Ask: “Turn this idea [paste your idea] into a short social caption that feels personal and grabs attention within 3 seconds.”
6. Email Assistant
Don’t ask: “Write a reply”
Ask: “Here’s what they sent me [paste it]. Draft a reply that’s short, clear, and confident but still friendly.”
7. Gain Mental Clarity
Don’t ask: “What should I do?”
Ask: “Help me break down this situation [describe the situation] and give 4–5 smart and effective paths forward with pros and cons.”
React ❤️ for more
❤12👍2
Some useful PYTHON libraries for data science
NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.
Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook –pylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.
Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Python’s usage in data scientist community.
Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.
Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of denoscriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.
Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.
Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.
Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.
Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.
SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.
Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.
Additional libraries, you might need:
os for Operating system and file operations
networkx and igraph for graph based data manipulations
regular expressions for finding patterns in text data
BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
NumPy stands for Numerical Python. The most powerful feature of NumPy is n-dimensional array. This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
SciPy stands for Scientific Python. SciPy is built on NumPy. It is one of the most useful library for variety of high level science and engineering modules like discrete Fourier transform, Linear Algebra, Optimization and Sparse matrices.
Matplotlib for plotting vast variety of graphs, starting from histograms to line plots to heat plots.. You can use Pylab feature in ipython notebook (ipython notebook –pylab = inline) to use these plotting features inline. If you ignore the inline option, then pylab converts ipython environment to an environment, very similar to Matlab. You can also use Latex commands to add math to your plot.
Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation. Pandas were added relatively recently to Python and have been instrumental in boosting Python’s usage in data scientist community.
Scikit Learn for machine learning. Built on NumPy, SciPy and matplotlib, this library contains a lot of efficient tools for machine learning and statistical modeling including classification, regression, clustering and dimensionality reduction.
Statsmodels for statistical modeling. Statsmodels is a Python module that allows users to explore data, estimate statistical models, and perform statistical tests. An extensive list of denoscriptive statistics, statistical tests, plotting functions, and result statistics are available for different types of data and each estimator.
Seaborn for statistical data visualization. Seaborn is a library for making attractive and informative statistical graphics in Python. It is based on matplotlib. Seaborn aims to make visualization a central part of exploring and understanding data.
Bokeh for creating interactive plots, dashboards and data applications on modern web-browsers. It empowers the user to generate elegant and concise graphics in the style of D3.js. Moreover, it has the capability of high-performance interactivity over very large or streaming datasets.
Blaze for extending the capability of Numpy and Pandas to distributed and streaming datasets. It can be used to access data from a multitude of sources including Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables, etc. Together with Bokeh, Blaze can act as a very powerful tool for creating effective visualizations and dashboards on huge chunks of data.
Scrapy for web crawling. It is a very useful framework for getting specific patterns of data. It has the capability to start at a website home url and then dig through web-pages within the website to gather information.
SymPy for symbolic computation. It has wide-ranging capabilities from basic symbolic arithmetic to calculus, algebra, discrete mathematics and quantum physics. Another useful feature is the capability of formatting the result of the computations as LaTeX code.
Requests for accessing the web. It works similar to the the standard python library urllib2 but is much easier to code. You will find subtle differences with urllib2 but for beginners, Requests might be more convenient.
Additional libraries, you might need:
os for Operating system and file operations
networkx and igraph for graph based data manipulations
regular expressions for finding patterns in text data
BeautifulSoup for scrapping web. It is inferior to Scrapy as it will extract information from just a single webpage in a run.
❤5🔥1
If you want to get a job as a machine learning engineer, don’t start by diving into the hottest libraries like PyTorch,TensorFlow, Langchain, etc.
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best 👍👍
Yes, you might hear a lot about them or some other trending technology of the year...but guess what!
Technologies evolve rapidly, especially in the age of AI, but core concepts are always seen as more valuable than expertise in any particular tool. Stop trying to perform a brain surgery without knowing anything about human anatomy.
Instead, here are basic skills that will get you further than mastering any framework:
𝐌𝐚𝐭𝐡𝐞𝐦𝐚𝐭𝐢𝐜𝐬 𝐚𝐧𝐝 𝐒𝐭𝐚𝐭𝐢𝐬𝐭𝐢𝐜𝐬 - My first exposure to probability and statistics was in college, and it felt abstract at the time, but these concepts are the backbone of ML.
You can start here: Khan Academy Statistics and Probability - https://www.khanacademy.org/math/statistics-probability
𝐋𝐢𝐧𝐞𝐚𝐫 𝐀𝐥𝐠𝐞𝐛𝐫𝐚 𝐚𝐧𝐝 𝐂𝐚𝐥𝐜𝐮𝐥𝐮𝐬 - Concepts like matrices, vectors, eigenvalues, and derivatives are fundamental to understanding how ml algorithms work. These are used in everything from simple regression to deep learning.
𝐏𝐫𝐨𝐠𝐫𝐚𝐦𝐦𝐢𝐧𝐠 - Should you learn Python, Rust, R, Julia, JavaScript, etc.? The best advice is to pick the language that is most frequently used for the type of work you want to do. I started with Python due to its simplicity and extensive library support, and it remains my go-to language for machine learning tasks.
You can start here: Automate the Boring Stuff with Python - https://automatetheboringstuff.com/
𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝐔𝐧𝐝𝐞𝐫𝐬𝐭𝐚𝐧𝐝𝐢𝐧𝐠 - Understand the fundamental algorithms before jumping to deep learning. This includes linear regression, decision trees, SVMs, and clustering algorithms.
𝐃𝐞𝐩𝐥𝐨𝐲𝐦𝐞𝐧𝐭 𝐚𝐧𝐝 𝐏𝐫𝐨𝐝𝐮𝐜𝐭𝐢𝐨𝐧:
Knowing how to take a model from development to production is invaluable. This includes understanding APIs, model optimization, and monitoring. Tools like Docker and Flask are often used in this process.
𝐂𝐥𝐨𝐮𝐝 𝐂𝐨𝐦𝐩𝐮𝐭𝐢𝐧𝐠 𝐚𝐧𝐝 𝐁𝐢𝐠 𝐃𝐚𝐭𝐚:
Familiarity with cloud platforms (AWS, Google Cloud, Azure) and big data tools (Spark) is increasingly important as datasets grow larger. These skills help you manage and process large-scale data efficiently.
You can start here: Google Cloud Machine Learning - https://cloud.google.com/learn/training/machinelearning-ai
I love frameworks and libraries, and they can make anyone's job easier.
But the more solid your foundation, the easier it will be to pick up any new technologies and actually validate whether they solve your problems.
Best Data Science & Machine Learning Resources: https://topmate.io/coding/914624
All the best 👍👍
❤5
Roadmap to become a Data Scientist:
📂 Learn Python & R
∟📂 Learn Statistics & Probability
∟📂 Learn SQL & Data Handling
∟📂 Learn Data Cleaning & Preprocessing
∟📂 Learn Data Visualization (Matplotlib, Seaborn, Power BI/Tableau)
∟📂 Learn Machine Learning (Supervised, Unsupervised)
∟📂 Learn Deep Learning (Neural Nets, CNNs, RNNs)
∟📂 Learn Model Deployment (Flask, Streamlit, FastAPI)
∟📂 Build Real-world Projects & Case Studies
∟✅ Apply for Jobs & Internships
React ❤️ for more
📂 Learn Python & R
∟📂 Learn Statistics & Probability
∟📂 Learn SQL & Data Handling
∟📂 Learn Data Cleaning & Preprocessing
∟📂 Learn Data Visualization (Matplotlib, Seaborn, Power BI/Tableau)
∟📂 Learn Machine Learning (Supervised, Unsupervised)
∟📂 Learn Deep Learning (Neural Nets, CNNs, RNNs)
∟📂 Learn Model Deployment (Flask, Streamlit, FastAPI)
∟📂 Build Real-world Projects & Case Studies
∟✅ Apply for Jobs & Internships
React ❤️ for more
❤12
👨🎓The Best Courses for AI from Universities with YouTube Playlists
Stanford University Courses
•CS221 - Artificial Intelligence: Principles and Techniques
•CS224U: Natural Language Understanding
•CS224n - Natural Language Processing with Deep Learning
•CS229 - Machine Learning
•CS230 - Deep Learning
•CS231n - Convolutional Neural Networks for Visual Recognition
•CS234 - Reinforcement Learning
•CS330 - Deep Multi-task and Meta-Learning
•CS25 - Transformers United
Carnegie Mellon University Courses
•CS 10-708: Probabilistic Graphical Models
•CS/LTI 11-711: Advanced NLP
•CS/LTI 11-737: Multilingual NLP
•CS/LTI 11-747: Neural Networks for NLP
•CS/LTI 11-785: Introduction to Deep Learning
•CS/LTI 11-785: Neural Networks
Massachusetts Institute of Technology Courses
•Introduction to Algorithms
•Introduction to Deep Learning
•6.S094 - Deep Learning
DeepMind x UCL
•COMP M050 - Introduction to Reinforcement Learning
•Deep Learning Series
Stanford University Courses
•CS221 - Artificial Intelligence: Principles and Techniques
•CS224U: Natural Language Understanding
•CS224n - Natural Language Processing with Deep Learning
•CS229 - Machine Learning
•CS230 - Deep Learning
•CS231n - Convolutional Neural Networks for Visual Recognition
•CS234 - Reinforcement Learning
•CS330 - Deep Multi-task and Meta-Learning
•CS25 - Transformers United
Carnegie Mellon University Courses
•CS 10-708: Probabilistic Graphical Models
•CS/LTI 11-711: Advanced NLP
•CS/LTI 11-737: Multilingual NLP
•CS/LTI 11-747: Neural Networks for NLP
•CS/LTI 11-785: Introduction to Deep Learning
•CS/LTI 11-785: Neural Networks
Massachusetts Institute of Technology Courses
•Introduction to Algorithms
•Introduction to Deep Learning
•6.S094 - Deep Learning
DeepMind x UCL
•COMP M050 - Introduction to Reinforcement Learning
•Deep Learning Series
❤4👍1
10 Free Machine Learning Books For 2025
📘 1. Foundations of Machine Learning
Build a solid theoretical base before diving into machine learning algorithms.
🔘 Click Here
📙 2. Practical Machine Learning: A Beginner's Guide with Ethical Insights
Learn to implement ML with a focus on responsible and ethical AI.
🔘 Open Book
📗 3. Mathematics for Machine Learning
Master the core math concepts that power machine learning algorithms.
🔘 Click Here
📕 4. Algorithms for Decision Making
Use machine learning to make smarter decisions in complex environments.
🔘 Open Book
📘 5. Learning to Quantify
Dive into the niche field of quantification and its real-world impact.
🔘 Click Here
📙 6. Gradient Expectations
Explore predictive neural networks inspired by the mammalian brain.
🔘 Open Book
📗 7. Reinforcement Learning: An Introduction
A comprehensive intro to RL, from theory to practical applications.
🔘 Click Here
📕 8. Interpretable Machine Learning
Understand how to make machine learning models transparent and trustworthy.
🔘 Open Book
📘 9. Fairness and Machine Learning
Tackle bias and ensure fairness in AI and ML model outputs.
🔘 Click Here
📙 10. Machine Learning in Production
Learn how to deploy ML models successfully into real-world systems.
🔘 Open Book
Like for more ❤️
📘 1. Foundations of Machine Learning
Build a solid theoretical base before diving into machine learning algorithms.
🔘 Click Here
📙 2. Practical Machine Learning: A Beginner's Guide with Ethical Insights
Learn to implement ML with a focus on responsible and ethical AI.
🔘 Open Book
📗 3. Mathematics for Machine Learning
Master the core math concepts that power machine learning algorithms.
🔘 Click Here
📕 4. Algorithms for Decision Making
Use machine learning to make smarter decisions in complex environments.
🔘 Open Book
📘 5. Learning to Quantify
Dive into the niche field of quantification and its real-world impact.
🔘 Click Here
📙 6. Gradient Expectations
Explore predictive neural networks inspired by the mammalian brain.
🔘 Open Book
📗 7. Reinforcement Learning: An Introduction
A comprehensive intro to RL, from theory to practical applications.
🔘 Click Here
📕 8. Interpretable Machine Learning
Understand how to make machine learning models transparent and trustworthy.
🔘 Open Book
📘 9. Fairness and Machine Learning
Tackle bias and ensure fairness in AI and ML model outputs.
🔘 Click Here
📙 10. Machine Learning in Production
Learn how to deploy ML models successfully into real-world systems.
🔘 Open Book
Like for more ❤️
❤5👍1
Artificial intelligence doesn't make us dumber, it makes us smarter. It presents us with the challenge of asking the right questions. Artificial intelligence doesn't know what we want and that's why it's so incredibly important to develop a specific question for a specific request and that's often harder than you think.
You have to think carefully about what you need to ask the right question that is specific and then use the answer provided by artificial intelligence to solve your problem. This requires a lot of thought, and artificial intelligence helps us to formulate our concerns more precisely and apply the outputs specifically. Using artificial intelligence well and correctly is not a trivial task, but requires some effort.
You have to think carefully about what you need to ask the right question that is specific and then use the answer provided by artificial intelligence to solve your problem. This requires a lot of thought, and artificial intelligence helps us to formulate our concerns more precisely and apply the outputs specifically. Using artificial intelligence well and correctly is not a trivial task, but requires some effort.
❤9👍1