Математические байки – Telegram
Математические байки
4.3K subscribers
1.44K photos
15 videos
27 files
914 links
Рассказы про разную математику.

Архив: http://dev.mccme.ru/~merzon/mirror/mathtabletalks/
Download Telegram
А вот ещё "ответное слово" — вероятностное доказательство для суммы обратных квадратов:
Forwarded from qtasep 💛💙
А вот ещё и «вероятностное» доказательство pi^2/6, отсюда https://www.tandfonline.com/doi/abs/10.4169/amer.math.monthly.118.07.641
Очень красиво, и этого я тоже не знал!
(Интересно, есть ли у этого какое-то красивое объяснение — почему нужно брать именно распределения Коши?)
В старших классах школы изучаются гиперболы и параболы, но мало кто в школе знает, что такое гиперболический параболоид, ведь этот объект — предмет изучения студентов. Тем не менее, картонную модель гиперболического параболоида (https://etudes.ru/models/conic-sections-hyperbolic-paraboloid-carboard-model/) можно сделать и обсудить даже с детьми!

Увидеть анимированное определение гиперболического параболоида, разобраться, где там параболы, а где гиперболы, можно на нашем сайте по ссылке https://etudes.ru/models/conic-sections-sadle-hyperbolic-paraboloid/. Чипсам, упакованным в цилиндрические тубусы, чтобы они меньше крошились, придают форму как раз гиперболического параболоида. Это одно из интересных и простых применений такой поверхности в обычной жизни. Проведя сильно противоречащий интуиции эксперимент с чипсами, представленный у нас на сайте в ролике «Чипсы: гиперболический параболоид» (https://etudes.ru/models/conic-sections-crisps-hyperbolic-paraboloid/), можно убедиться, что гиперболический параболоид — линейчатая поверхность. Кстати, оба ролика теперь доступны в разрешении 4k!

Конкурс этой недели, в рамках которого мы разыгрываем книгу «Математическая составляющая», связан с картонной моделью гиперболического параболоида и будет интересен как детям, так и взрослым (ссылка на конкурс). Сделанная модель наглядно иллюстрирует свойство линейчатости. Также, используя модель, можно увидеть ещё один интересный факт: если попытаться изогнуть лист бумаги без разрезов в форме гиперболического параболоида, то ничего не выйдет — в каком-нибудь месте бумага обязательно будет отстоять от поверхности. Искушённый читатель правильно скажет, что у гиперболического параболоида отрицательная кривизна. Попробуйте наложить на сделанную модель лист бумаги и убедиться в этом.

Посмотреть на картонную модель гиперболического параболоида можно, например, в журнале «Квант» (№3 за 1990 год). Напомним, что архив всех номеров журнала можно найти на сайте https://kvant.ras.ru/. Кстати в этом году, Кванту исполнилось 50 лет!

Когда-то, в Древней Индии математическим доказательством считалась картинка иллюстрирующая математический факт, сопровождаемая надписью «Смотри!». Вот и мы в этот раз, давая лишь картинку, идём по этому пути. Sapienti sat. Только в данном случае лучше перефразировать – не «умному», а «желающему».
И сначала это кажется чем-то совершенно мистическим ("существует семейство деформаций параболоидов, сохраняющих оба семейства образующих и изометричных на каждом из них"), пока не догадаешься посмотреть на это сверху — или, что то же самое, спроецировать вдоль направления, по которому оранжевые и фиолетовые плоскости пересекаются, на горизонтальную плоскость.
А тогда наша конструкция становится просто решёткой из параллелограммов, которая "складывается" самым, что ни на есть, естественным образом.
Ну и мне это напомнило муаровую картинку, которую мне когда-то показал совершенно замечательный Тадаси Токиэда (Tadashi Tokieda). А именно — возьмём две шахматных решётки, одна из которых напечатана (или нарисована) на прозрачной бумаге:
А теперь давайте их наложим одну на другую — и будем поворачивать. Что получится? Оказывается, получается очень красивая картина:
А ещё интереснее, если исходная решётка была треугольной... Попробуйте сделать сами (когда Тадаси мне это показал, я прыгал от восторга)! Ну а когда я рассказал это Коле Андрееву, он сказал, что уже знает по другой причине — см. последнюю иллюстрацию отсюда: https://book.etudes.ru/toc/colorspaces/#xtra1
К вечеру воскресенья — давайте я поделюсь несколькими видео:
1) Савватеев про задачу про сборку замкнутой дороги. Очень хорошо сделано — и задача действительно удачно выбрана. Когда он предлагает поставить паузу и подумать — это и впрямь стоит сделать!
https://www.youtube.com/watch?v=lLZzgpG5320
2) Очень классно сделанное видео про клеточные автоматы — https://www.youtube.com/watch?v=FiO6jkNkrb4 (мои поздравления автору!). Тут не только игра "Жизнь", но и ракушка и "правило 30 Вольфрама", и муравей Лэнгтона (а под конец — и его 3d-аналог), и заканчивается, действительно, [некоторой] 3d-версией игры "Жизнь" — похожим на неё клеточным автоматом с "достаточно интересным" поведением.
3) свежее видео Numberphile с практически "пляшущими человечками":
https://www.youtube.com/watch?v=9p55Qgt7Ciw
(Ключевой) кадр из видео Numberphile —
(Но до и после там тоже интересно!)
О, какая прекрасная история!