Математические байки – Telegram
Математические байки
4.3K subscribers
1.44K photos
15 videos
27 files
914 links
Рассказы про разную математику.

Архив: http://dev.mccme.ru/~merzon/mirror/mathtabletalks/
Download Telegram
А с учётом знака всё получается правильно. А именно — если f:S^1\to S^1 это гладкое отображение, а точка p такова, что во всех её прообразах производная f ненулевая (в частности, таких прообразов тогда конечное число), то
deg(f) = \sum_{x: f(x)=p} sign f'(x).
Вот, например, отображение степени 2. У отмеченной на оси ординат точки 4 прообраза, в трёх из них f'>0, в одной f'<0, поэтому степень равна
1+1-1+1=2.
Кстати, у точки, которой отвечает начало отрезка на оси ординат (склеенное с концом этого же отрезка — это же окружность), два прообраза, оба с плюсом. И мы опять получаем 1+1=2 — что логично: мы же находим одну и ту же величину deg f, которую уже определили как "число оборотов".
Математические байки
А с учётом знака всё получается правильно. А именно — если f:S^1\to S^1 это гладкое отображение, а точка p такова, что во всех её прообразах производная f ненулевая (в частности, таких прообразов тогда конечное число), то deg(f) = \sum_{x: f(x)=p} sign…
С другой стороны, я мог бы не говорить про "число оборотов", а сразу определить степень как число прообразов с учётом знака. И тогда была бы нужна "проверка корректности": во-первых, почему такая точка p есть (у которой все прообразы с ненулевой производной), а во-вторых, почему две разные точки будут приводить к одному и тому же результату.

И тогда для первой части корректности нужно было бы сказать, что множество тех p, у которых хотя бы в одном прообразе производная f нулевая — иными словами, множество критических значений f — имеет меру ноль.
В некоторых кавычках — потому что его мера оценивается сверху интегралом от |f'| по множеству критических точек — но интегрируем-то мы ноль!
А чуть более аккуратно — покрываем множество критических точек маленькими интервалами с суммой длин, близкой к его мере; когда мы применяем f — длина образа каждого интервала оценивается по теореме Лагранжа, как длина самого интервала * что-то очень маленькое (потому что где-то там f'=0). Так что сумма длин образов оказывается сколь угодно малой — и вот и мера ноль.
А для второй (для совпадения того, что дадут две разные точки p_1 и p_2) — чуть-чуть возмутить f, чтобы прообразы p_1 и p_2 остались почти такими же (в частности — с теми же знаками производной), но все минимумы и максимумы у f стали бы невырожденными и на разных уровнях. И тогда, когда мы "поведём" точку p от p_1 к p_2, всё, что мы будем наблюдать, это как два прообраза с разными знаками производной сливаются и исчезают — или, наоборот, из пустоты появляются два прообраза с разными знаками. И при этом наша сумма не изменяется.
Математические байки
С другой стороны, я мог бы не говорить про "число оборотов", а сразу определить степень как число прообразов с учётом знака. И тогда была бы нужна "проверка корректности": во-первых, почему такая точка p есть (у которой все прообразы с ненулевой производной)…
И вот это определение обобщается сразу на любую размерность. А именно: пусть у нас есть два ориентированных (ориентация уже выбрана) замкнутых (компактных без края) гладких многообразия M и N одной размерности, и гладкое отображение f:M\to N. Тогда степень deg f отображения f определяется так:
- берём точку p на N, у которой для каждого её прообраза x дифференциал df|_x (линейная часть f в точке x) невырожден.
- для каждого её прообраза пишем +1 или -1 в зависимости от того, сохраняет или меняет f рядом с ним ориентацию (иными словами, пишем sign det df|_x)
- складываем всё, что написано.

Опять же, нужна проверка корректности: что такая точка p есть, и что результат не зависит от её выбора. Первое делается аналогично тому, что мы делали на окружности, только с поправкой на многомерность, и называется леммой Сарда : множество критических значений (достаточно) гладкой функции имеет меру ноль.
И вторая часть тоже проверяется более-менее так же как и для окружности: соединить две точки p_1 и p_2 типичным путём и если надо, чуть-чуть пошевелить отображение f. Тогда при движении от p_1 к p_2 по типичному пути для типичной f всё, что нам может встретиться, это "вырождения коразмерности 1". А это только слияние двух прообразов с разным сохранением-изменением ориентации и их исчезновение (или, наоборот, рождение двух с разными знаками из ничего).
Сегодняшние мультфильмы от Миши Панова демонстрируют некоторые разрезания куба на равные многогранники. Попробуйте разрезать куб на 3 равных тетраэдра. А на 6? Кстати, в случае трёх частей можно не ограничиваться тетраэдрами: второй и третий мультфильмы показывают целое множество разрезаний на три равных многогранника.
Математические байки
Photo
Продолжим?

Для начала — мне хотелось показать две картинки из "Теории катастроф" В.И. Арнольда. Первая — показывает складку при проекции сферы, и чуть более сложную особенность ("сборку") — но собственно эта особенность происходит над одной точкой (то есть над коразмерностью два) — а если какой-нибудь путь внизу не проходит прямо через неё (чего всегда можно добиться малым шевелением), то всё, что на этом пути мы встретим, будут только точки склейки. Вот она:
(Рисунок из "Теории катастроф" В. И. Арнольда)
Вторая же показывает, почему тор правильно рисовать так, как его рисуют. (До сих пор помню, как меня на первом курсе НМУ этому научили!)

Дело в том, что если нарисовать тор от руки как "эллипс, а внутри эллипс, изображающий дырку", то это будет восприниматься скорее как кольцо, чем как трёхмерный объект (и к тому есть причина):
Чтобы картинка воспринималась, как тор, вырезаемую дырку нужно нарисовать двумя дугами — причём одну из них более длинной, а другую остановить при пересечении с первой:
Математические байки
И вот это определение обобщается сразу на любую размерность. А именно: пусть у нас есть два ориентированных (ориентация уже выбрана) замкнутых (компактных без края) гладких многообразия M и N одной размерности, и гладкое отображение f:M\to N. Тогда степень…
Так вот — эта картинка действительно более правильна с геометрической точки зрения. А именно — возьмём тор в R^3, и спроецируем его на "плоскость зрения" немного под углом. Отметим те его точки, где касательная к нему плоскость параллельна направлению проекцирования — иначе говоря, как раз критические точки проекции.
Математические байки
Photo
В их образе мы увидим как раз вот эту кривую — и у неё будет ещё "невидимая" компонента, которая при настоящем взгляде оказывается закрыта другой частью тора. И вот вторая картинка: