Математические байки
Как положено, за фотографией "с чего всё начиналось" должны следовать "что было дальше" и "как всё закончилось". Первая:
В бесконечномерных пространствах, правда, всё становится заметно сложнее. И вторая часть лекции началась с рассмотрения пространства бесконечных в обе стороны последовательностей, и оператора H, заданного вот такой (бесконечной в обе стороны) матрицей (она видна посередине этой доски) —
Собственно, этот оператор — чуть-чуть подправленная дискретная версия одномерного оператора Лапласа: вместо второй производной взято второе приращение
(f_{n+1}-f_n) - (f_n-f_{n-1}) = (f_{n+1}+f_{n-1}) - 2f_n,
из которого часть "-2*f_n", умножение функции на (-2), убрали (что на собственные вектора не влияет, а все собственные значения должно было увеличить на 2).
Если брать буквально всё пространство последовательностей — то оно "слишком большое" и не нормированное. Поэтому правильно рассматривать пространство l_2 последовательностей со сходящейся суммой квадратов модулей. В котором есть естественное скалярное произведение,
<f,g>= \sum_n f_n \bar{g}_n,
и порождённое им расстояние: длина вектора это корень из его скалярного квадрата
|f|^2 = \sum_n |f_n|^2.
Кстати, если у нас есть единичный по длине вектор \psi, а оператор мы рассматриваем как пришедший из квантовой механики — то |\psi_n|^2 можно интерпретировать как вероятность того, что при измерении частица окажется в точке n. Как раз получаются неотрицательные числа с суммой 1.
(f_{n+1}-f_n) - (f_n-f_{n-1}) = (f_{n+1}+f_{n-1}) - 2f_n,
из которого часть "-2*f_n", умножение функции на (-2), убрали (что на собственные вектора не влияет, а все собственные значения должно было увеличить на 2).
Если брать буквально всё пространство последовательностей — то оно "слишком большое" и не нормированное. Поэтому правильно рассматривать пространство l_2 последовательностей со сходящейся суммой квадратов модулей. В котором есть естественное скалярное произведение,
<f,g>= \sum_n f_n \bar{g}_n,
и порождённое им расстояние: длина вектора это корень из его скалярного квадрата
|f|^2 = \sum_n |f_n|^2.
Кстати, если у нас есть единичный по длине вектор \psi, а оператор мы рассматриваем как пришедший из квантовой механики — то |\psi_n|^2 можно интерпретировать как вероятность того, что при измерении частица окажется в точке n. Как раз получаются неотрицательные числа с суммой 1.
А что у H с собственными векторами? [Тут чуть-чуть отклонюсь от хода лекции и добавлю отсебятины]
Если бы нас интересовали просто последовательности, без всяких условий — то подошли бы любые геометрические прогрессии r^n.
Это и логично: наш оператор коммутирует с оператором "сдвига всей последовательности влево", поэтому логично искать у них общие собственные вектора — а у сдвига влево собственный вектор с собственным значением r это как раз геометрическая прогрессия со знаменателем r.
Но они нам не подходят. Скажем, если |r|>1, то такая последовательность экспоненциально возрастает при сдвиге вправо, а если |r|<1 — при сдвиге влево. И это уж совсем ни в какие ворота.
Увы, последовательности с |r|=1 тоже буквально в нашем пространстве не лежат — хоть они по модулю не растут, но и не убывают. Поэтому настоящих собственных векторов у H нет.
Если бы нас интересовали просто последовательности, без всяких условий — то подошли бы любые геометрические прогрессии r^n.
Это и логично: наш оператор коммутирует с оператором "сдвига всей последовательности влево", поэтому логично искать у них общие собственные вектора — а у сдвига влево собственный вектор с собственным значением r это как раз геометрическая прогрессия со знаменателем r.
Но они нам не подходят. Скажем, если |r|>1, то такая последовательность экспоненциально возрастает при сдвиге вправо, а если |r|<1 — при сдвиге влево. И это уж совсем ни в какие ворота.
Увы, последовательности с |r|=1 тоже буквально в нашем пространстве не лежат — хоть они по модулю не растут, но и не убывают. Поэтому настоящих собственных векторов у H нет.
//putting my physicist hat on//
Но (я не буду придавать этому кусочку аккуратный смысл, байка есть байка) — есть обобщённые: геометрические прогрессии
(F_{\alpha})_n=e^{2πi \alpha n},
где \alpha из окружности R/Z, с единичным по модулю знаменателем
r=e^{2πi \alpha}
(собственно, принадлежащим окружности |r|=1 на комплексной плоскости).
Они, конечно, не принадлежат пространству l_2 — ряд из квадратов модулей это ряд из одних единиц — но давайте мы это сейчас проигнорируем.
Тогда можно разложить функцию f по такому "базису" — сопоставив каждой точке \alpha окружности R/Z соответствующий коэффициент-"скалярное произведение"
u(\alpha) = \sum_n f_n e^{-2πi \alpha n}.
На самом деле — мы только что придумали заново ряд Фурье! (Правда, у нас в итоге минус перед \alpha оказался не там, но это не так важно.)
Потому что в обратную сторону мы возвращаемся интегралом
f_n = \int_0^1 u(\alpha) (F_{\alpha})_n d\alpha =
\int_0^1 u(\alpha) e^{2πi \alpha n} d\alpha.
Так что последовательность f — это (с точностью до замены n на -n или \alpha на -\alpha) последовательность комплексных коэффициентов Фурье функции u на единичной окружности.
(Правда, я тут пару раз сжульничал, один раз, когда забыл нормировать коэффициент на [бесконечную] норму базисного вектора, а второй, когда сумму по базисным векторам заменил на интеграл. Так вот — эти два жульничества отменяют друг друга, и всё в итоге получается правильно.)
Но (я не буду придавать этому кусочку аккуратный смысл, байка есть байка) — есть обобщённые: геометрические прогрессии
(F_{\alpha})_n=e^{2πi \alpha n},
где \alpha из окружности R/Z, с единичным по модулю знаменателем
r=e^{2πi \alpha}
(собственно, принадлежащим окружности |r|=1 на комплексной плоскости).
Они, конечно, не принадлежат пространству l_2 — ряд из квадратов модулей это ряд из одних единиц — но давайте мы это сейчас проигнорируем.
Тогда можно разложить функцию f по такому "базису" — сопоставив каждой точке \alpha окружности R/Z соответствующий коэффициент-"скалярное произведение"
u(\alpha) = \sum_n f_n e^{-2πi \alpha n}.
На самом деле — мы только что придумали заново ряд Фурье! (Правда, у нас в итоге минус перед \alpha оказался не там, но это не так важно.)
Потому что в обратную сторону мы возвращаемся интегралом
f_n = \int_0^1 u(\alpha) (F_{\alpha})_n d\alpha =
\int_0^1 u(\alpha) e^{2πi \alpha n} d\alpha.
Так что последовательность f — это (с точностью до замены n на -n или \alpha на -\alpha) последовательность комплексных коэффициентов Фурье функции u на единичной окружности.
(Правда, я тут пару раз сжульничал, один раз, когда забыл нормировать коэффициент на [бесконечную] норму базисного вектора, а второй, когда сумму по базисным векторам заменил на интеграл. Так вот — эти два жульничества отменяют друг друга, и всё в итоге получается правильно.)
Если действовать чуть более честно, то можно рассмотреть все двусторонне-бесконечные последовательности, а только периодические с периодом N. С естественным скалярным произведением
<f,g>= \sum_{n=1}^N f_n \bar{g}_n,
и соответствующей нормой
|f|^2= \sum_{n=1}^N |f_n|^2.
Тогда нам подходят не все геометрические прогрессии, а только те, у которых знаменатель в степени N даёт единицу:
r_j = e^{2πi j/N}
(что то же самое, \alpha_j=j/N),
что даёт нам собственные вектора F_j = F_{\alpha_j}:
(F_j)_n = e^{2πi j*n/N}.
Поскольку каждый их коэффициент равен по модулю 1 — у них у всех квадрат длины равен N (ибо сумма N единиц).
Проекция на вектор v задаётся как
f -> <f,v>/<v,v> * v
(контрольная проверка: то, что перпендикулярно v, переходит в ноль, а сам вектор v в себя — на то и знаменатель), поэтому разложение по ортогональному базису F_j исходного вектора f записывается как
f = \sum_j <f, F_j> / <F_j,F_j> *F_j
=(1/N) \sum_j <f, F_{\alpha_j}> * F_{\alpha_j},
<f,g>= \sum_{n=1}^N f_n \bar{g}_n,
и соответствующей нормой
|f|^2= \sum_{n=1}^N |f_n|^2.
Тогда нам подходят не все геометрические прогрессии, а только те, у которых знаменатель в степени N даёт единицу:
r_j = e^{2πi j/N}
(что то же самое, \alpha_j=j/N),
что даёт нам собственные вектора F_j = F_{\alpha_j}:
(F_j)_n = e^{2πi j*n/N}.
Поскольку каждый их коэффициент равен по модулю 1 — у них у всех квадрат длины равен N (ибо сумма N единиц).
Проекция на вектор v задаётся как
f -> <f,v>/<v,v> * v
(контрольная проверка: то, что перпендикулярно v, переходит в ноль, а сам вектор v в себя — на то и знаменатель), поэтому разложение по ортогональному базису F_j исходного вектора f записывается как
f = \sum_j <f, F_j> / <F_j,F_j> *F_j
=(1/N) \sum_j <f, F_{\alpha_j}> * F_{\alpha_j},
и вот при N->\infty правая часть и превращается в интеграл по \alpha: ведь (1/N)=(\alpha_{j+1}-\alpha_j).
Математические байки
//putting my physicist hat on// Но (я не буду придавать этому кусочку аккуратный смысл, байка есть байка) — есть обобщённые: геометрические прогрессии (F_{\alpha})_n=e^{2πi \alpha n}, где \alpha из окружности R/Z, с единичным по модулю знаменателем r=e^{2πi…
[Заканчивая отсебятину и возвращаясь к лекции Житомирской]
Возвращаясь к бесконечной матрице H — вот такое сопоставление, переход от последовательности f_n к функции u(\alpha), отождествляет пространство последовательностей l_2 со сходящейся суммой квадратов модулей и пространство функций L_2(R/Z) со сходящимся интегралом модуля.
И если сделать такой "Фурье"-переход от l_2(Z) к L_2(R/Z), то H в новых координатах запишется как
u(\alpha) -> (e^{2πi \alpha}+e^{-2πi \alpha}) u(\alpha) = 2cos (2π\alpha) u(\alpha),
потому что H это сумма двух частей: сдвига влево, который умножает на одну экспоненту, и сдвига вправо, который умножает на другую.
Возвращаясь к бесконечной матрице H — вот такое сопоставление, переход от последовательности f_n к функции u(\alpha), отождествляет пространство последовательностей l_2 со сходящейся суммой квадратов модулей и пространство функций L_2(R/Z) со сходящимся интегралом модуля.
И если сделать такой "Фурье"-переход от l_2(Z) к L_2(R/Z), то H в новых координатах запишется как
u(\alpha) -> (e^{2πi \alpha}+e^{-2πi \alpha}) u(\alpha) = 2cos (2π\alpha) u(\alpha),
потому что H это сумма двух частей: сдвига влево, который умножает на одну экспоненту, и сдвига вправо, который умножает на другую.
Отсюда, в частности, видно, почему у него нет настоящих собственных векторов (последовательностей, функций): потому что в новых координатах мы просто умножаем на функцию 2cos(2π\alpha), а у неё в каждой точке — своё значение. Поэтому вот если бы в L_2 была "дельта-функция" u, сосредоточенная в одной точке — то она была бы собственной. Но её там нет.
Но по крайней мере — мы получили "почти-диагонализацию", превратив оператор в "умножение на функцию".
Но по крайней мере — мы получили "почти-диагонализацию", превратив оператор в "умножение на функцию".
И это, кстати, частный случай общей спектральной теоремы — что "хороший" [ограниченный самосопряжённый] оператор можно заменой координат привести к виду "умножения на функцию".
В качестве небольшой паузы — один опыт, который я выучил только недавно, из вот этого ролика PhysicsGirl. Оказывается, хинин (который есть в тонике) флуоресцирует в ультрафиолете, и это смотрится очень круто! Вот ультрафиолетовый фонарик — и флуоресцирующая бутылка:
Математические байки
Анекдот в тему — как специалист по теории вероятностей проверяет, что интеграл от 0 до 1 от x^N это 1/(N+1)? Он выбирает на отрезке [0,1] равномерно и независимо N+1 точку и спрашивает, с какой вероятностью первая из них правее всего? С одной стороны, вероятность…
Всё ещё в качестве паузы (и я потом продолжу про лекцию Житомирской): пара фото- и видео из Лаборатории популяризации и пропаганды математики МИАН — я тут недавно оказался в гостях у Николая Андреева.
Первое фото — три одинаковые пирамиды, на которые разрезается трёхмерный куб (или "интеграл от x^2 от 0 до 1 равен 1/3"):
Первое фото — три одинаковые пирамиды, на которые разрезается трёхмерный куб (или "интеграл от x^2 от 0 до 1 равен 1/3"):
Media is too big
VIEW IN TELEGRAM
А вот разборка куба на эти три пирамиды.
А ещё такой треугольник стоит в Математическом парке в Майкопе.
Математический парк
Невозможный треугольник — Математический парк
Открыт в 1934 году Оскаром Реутерсвардом. Широкая известность — после статьи Роджера Пенроуза 1958 года. Литографии Маурица Эшера: Водопад (1961), Спускаясь и поднимаясь (1960).
Математические байки
Второе — это потребовало аккуратного выбора точки съёмки, но я-таки снял невозможный треугольник так, что он и впрямь кажется настоящим невозможным!
На заднем плане (я сознательно не вырезал из этого фото "только треугольник") виден додекаэдр с проведённым на нём замкнутым гамильтоновым путём — проходящим ровно один раз через каждую вершину. И насколько я понимаю, с вопроса/головоломки Гамильтона о том, чтобы такой путь найти, терминология и пошла.
А вот этот додекаэдр отдельно:
А вот этот додекаэдр отдельно: