Математические байки – Telegram
Математические байки
4.3K subscribers
1.44K photos
15 videos
27 files
914 links
Рассказы про разную математику.

Архив: http://dev.mccme.ru/~merzon/mirror/mathtabletalks/
Download Telegram
🎉Н.Н. Андрееву - 50!🎉

У замечательного популяризатора математики Николая Николаевича Андреева сегодня юбилей! Десятки тысяч детей и взрослых вдохновились благодаря тому, что НН делает.
Отличный повод вспомнить несколько замечательных сюжетов из проекта "Математические этюды".

📗Найти свою дату рождения в числе Pi

📗Разобраться с плотнейшей упаковкой кругов

📗Доказать теорему Пифагора
, перекладывая треугольники

📗Книга "Математическая составляющая" — советую купить, но можно и бесплатно скачать прямо на сайте:)

📗Новый раздел "Игротека" — про активности, которыми можно заниматься на мероприятиях и фестивалях

И многое-многое другое.

Николай Николаевич, с Днем рождения!

Upd. https://www.mathnet.ru/php/conference.phtml?confid=2550 - трансляция конференции в честь праздника
Непрерывное математическое образование
доступно видео семинара учителей математики, посвященного памяти Сергея Маркелова программа: * Н.Н.Андреев, И.В.Яшенко * С.А.Дориченко. Несколько ярких задач С.Маркелова на Турнире городов * А.А.Заславский. Задачи С.Маркелова на олимпиаде по геометрии им.…
Посмотрел запись семинара — и который день нахожусь под впечатлением. Там обсуждали задачи Серёжи — и от них остаётся ощущение, « а как такое можно было придумать?! ».

Вот тут Сергей Дориченко рассказывает про задачу про муравья на параллелепипеде:
https://youtu.be/AWpK7HSI5rA?si=8qQMrE0BXqrqHfLR&t=1628
(На problems.ru : задача 65394)

Очень естественно, что для муравья, сидящего в одной вершине куба, который может ходить только по его поверхности, самая далёкая точка поверхности — противоположная вершина куба. А будет ли это так для любого прямоугольного параллелепипеда?

Удивительным образом, ответ — нет!!
А именно: возьмём параллелепипед-«спичку» (с квадратным сечением, но очень длинный); собственно, хватит 10x2x2. Тогда муравей может проползти до противоположной вершины, пройдя по двум смежным боковым граням — и это длина диагонали в прямоугольнике 10x4, которая равна корню из 116.
А путь до центра дальней маленькой грани оказывается длиннее! Муравью нужно пройти минимум 10 (проекция пути на соответствующее ребро), чтобы до неё дойти, и ещё минимум 1 по этой грани. А это 11, корень из 121.

(Если брать прямоугольник Ax2x2, где A очень большое, то длина пути до противоположной вершины это A+o(1), а длина пути до центра не меньше A+1.)

И там ещё было много столь же удивительных задач!
Тарасу Евгеньевичу Панову исполняется сегодня 50 лет

в честь этого в МГУ 11-12 февраля проходит мини-конференция https://www.mathnet.ru/rus/conf2545

а здесь пусть будет обзор https://www.mathnet.ru/rus/rm320 «Действия торов, комбинаторная топология и гомологическая алгебра» Бухштабера и Панова
https://mccme.ru/ru/nmu/courses-of-nmu/vesna-20242025/s25-topology3/

в этом семестре Т.Е.Панов читает в НМУ топологию для 2 курса — начиная с понедельника 17.02
Forwarded from Кроссворд Тьюринга (Vanya Yakovlev)
День математика в 179 школе

15 февраля в московской школе № 179 состоится традиционная мини-конференция в рамках Дня математика, посвящённого дню рождения Н.Н. Константинова.
В программе — много интересных докладов для школьников!

Программа
Секция 7–9 классов
13:00 – 13:55 — «Задачки Квантландии», Михаил Евдокимов
14:10 – 15:05 — «Теория чисел и алгоритм RSA», Валентина Кириченко
15:20 – 16:00 — «Хроматическое число плоскости — хотя бы 5», Лев Азманов

Секция 9–11 классов
13:00 – 13:55 — «Окружности и расслоение Хопфа», Владлен Тиморин
14:10 – 15:05 — «Группы в действии», Алексей Городенцев
15:20 – 16:00 — «Базисы Грёбнера», Юлия Зайцева

Анонсы на канале кружочка. Форма регистрации
Адрес: Москва, ул. Большая Дмитровка, 5/6с7
В это воскресенье в 36-й раз пройдет замечательная олимпиада для 6 и 7 класса — Математический праздник

В подборке мой любимый вид задач из Матпраздника — догонялки. Когда ответ можно продолжать улучшать. Задача 4 была исходно сформулирована с конкретной целью, но мне нравится видеть и в ней догонялку.

#6класс #7класс
разрежьте яблоко на рисунке на 5 равных¹ (несвязных) фигур

¹ т.е. фигуры должны быть нарисованы при помощи одного и того же трафарета

// ранее на тему разрезаний на одинаковые несвязные фигуры: https://news.1rj.ru/str/cme_channel/423

задача предлагалась сегодня на Математическом празднике (автор И.Русских)

на сайте https://mccme.ru/matprazdnik выложены задачи, решения, видеоразборы
Forwarded from Геометрия-канал (Grigory Merzon)
Квантик нарисовал выпуклый многоугольник и легко заштриховал его, проводя отрезки с концами на сторонах многоугольника.

Потом он подумал – а можно ли заштриховать любой выпуклый многогранник (вместе с внутренностью), проводя отрезки с концами на его рёбрах? Или для каких-то многогранников это не удастся и внутри останутся незаштрихованные пустоты?

// коллега Дориченко рассказал задачку
Стороны пятиугольника Понселе продолжили, провели описанные окружности образовавшихся треугольников и отметили их повторные точки пересечения. Тогда при вращении пятиугольника Понселе между вписанной и описанной окружностями данные точки двигаются по фиксированной (синей) окружности:

https://www.geogebra.org/classic/zzckughf
Вот-вот начнётся полное лунное затмение (вот карта того, откуда оно видно; image credit: https://www.timeanddate.com/eclipse/map/2025-march-14 ).
Ну и — дежурный контрольный вопрос: исходя только из этого и не смотря на небо, скажите, какая сейчас фаза Луны?
на Московской математической олимпиаде была сегодня такая задача
«У хозяйки есть кусок мяса, которым она хочет накормить трёх котиков. Раз в несколько секунд хозяйка отрезает кусочек мяса и скармливает его одному из котиков на свой выбор, причём каждый кусочек должен составлять одну и ту же долю куска, от которого его отрезают. Через некоторое время хозяйка убирает остаток мяса в холодильник. Может ли она скормить котикам поровну мяса?» (А.Кушнир)

другими словами, можно ли разбить члены какой-нибудь геометрической прогрессии с 0<q<1 на 3 группы с одинаковыми суммами?

любая хозяйка, которая умеет резать мясо в золотом сечении, решит задачу для 2 котиков; для 3 котиков попробуйте решить на бумажке; для 4 котиков покажу попозже (пусть пока будет возможность подумать), как воспользоваться компьютером; какой ответ для 5 котиков — хотел бы знать
нравится сюжет Конвея про аналогию между играми и числами

например, игры (скажем, в которых роли противников симметричны, а проигрывает тот, кто не может сделать ход) можно складывать: в G+H играют на двух столах, на одном столе позиция в игре G, на другом — в игре H, каждый раз можно выбрать один из столов и сделать за ним ход

если в H выигрывает второй игрок, то результат у G+H такой же как и в G — это мотивирует объявить все выигрышные для второго игрока игры нулевыми

а вот игры, в которых выигрывает первый, бывают очень разными

если «ним-число» *n — это глуповатая игра «есть кучка из n камней, за ход можно взять любое количество камней из кучки», то *0 действительно нулевая игра, а все остальные *n — различные… и ненулевые )

и игра в четыре кучки камней *1+*3+*5+*7 уже не очень простая (не все персонажи фильма L'Année dernière à Marienbad справились), чтобы научиться в нее играть, хорошо бы изучить таблицу операций с ним-числами

вот такой, например, листок про это: https://dev.mccme.ru/~merzon/v14/pscache/5d-nim.pdf

написал код, который выписывает таблицы сложения и умножения для ним-чисел


def mex(N,arr):
for a in range(N):
if (a not in arr):
return a
return None

N = 2**(2**2)

t_sum = [list(range(N))]
for m in range(1,N):
newline = []
for i in range(N):
# *m+*i = mex{*j+*i,*m+*i'|j<m,i'<i}
arr = [line[i] for line in t_sum] + newline
newline.append(mex(N,arr))
t_sum.append(newline)
print(*t_sum,sep="\n")

t_mul = [[0]*N]
for m in range(1,N):
newline = []
for i in range(N):
# *m.*i = mex{*j.(*i+*i')+*m.*i'|j<m,i'<i}
arr = []
for i1,mi1 in enumerate(newline):
ii1 = t_sum[i][i1]
for line in t_mul:
jii1 = line[ii1] #*j.(*i+*i')
arr.append(t_sum[jii1][mi1])
newline.append(mex(N,arr))
t_mul.append(newline)
print()
print(*t_mul,sep="\n")


можно заметить, а потом и доказать, что ним-сложение — это, на самом деле, просто побитовое сложение

а вот для ним-умножения настолько простого описания, кажется, нет

( определение — можно прочитать в https://en.wikipedia.org/wiki/Nimber#Multiplication )

но операция оч. хорошая — в частности, ним-числа, меньшие *(2^(2^k)), образуют конечное поле