Олимпиадная комбинаторика – Telegram
Олимпиадная комбинаторика
1.45K subscribers
43 photos
5 files
27 links
Решаем задачи по олимпиадной комбинаторике

Чат: https://news.1rj.ru/str/+FuCRPdSjWjMyZWU6
Download Telegram
А вот и обещанная задача

Есть гирьки массами 2⁰, 2¹, …, 2ⁿ грамм и чашечные весы, изначально находящиеся в равновесии. Нужно последовательно выставлять по одной гирьке на весы в некотором порядке так, чтобы в каждый момент времени правая чаша весов не перевешивала. Сколькими способами это можно сделать?
🎃316👎6👍4🥰3🤩1
Так-так-так... Разыскиваются сильные команды, способные решить все задачи на JetBrains Math Challenge! Мне кажется, что в этот раз это будет не так просто... До окончания регистрации осталась всего неделя! А до самой олимпиады всего две недели (чуть меньше)!

(Кстати, это хороший способ потренироваться перед Колмом...)
😁54
Forwarded from Fpmath comments
Пользуясь случаем, напомню следующую задачу.

У Белочки есть бесконечно много орехов: по одному ореху каждой из
масс 1 г, 2 г, 3 г, \dots. Она взяла n мешков, положила в каждый по
конечному числу орехов, после чего написала на каждом мешке суммарную
массу лежащих в нем орехов.

а) Докажите, что можно было собрать мешки с
такими же массами, использовав не более 4n-3 орехов.

б*) Какова точная оценка на число орехов, которого заведомо достаточно?

Пункт б) я решать не умею.
17👍1
Опубликуем одну из задач нашей сегодняшней олимпиады «JetBrains Youth Challenge», автор — Д. В. Афризонов.

В лиге старших классов она была 4-й из 8, и её решили 8 команд из 50. А вы сможете?

#мт_задача
👍21
Пост благодарности! Я бы хотел поблагодарить всех участников олимпиады за то, что они не поленились потратить свое воскресное время на решение задач, борьбу с лингвистическими и, порой, техническими трудностями, и это при том, что олимпиада эта не дает практически никаких бенефитов — без вас эта олимпиада была бы неполноценной.

Я бы хотел поблагодарить членов жюри, которые присоединились слушать задачи. Тоже ведь трудно заставить себя поучастовать в воскресном мероприятии, которое ничего кроме радости общения с единомышленниками тебе не принесет. Членам жюри тоже пришлось решать лингвистические и технические задачи, которые ставили перед ними участники. Спасибо вам! Хотелось бы, чтобы нас становилось больше и прослушка проходила в более спокойном режиме!

Я бы очень хотел поблагодарить авторов задач, которые не пожалели потратить свои творения на в общем-то никому пока неизвестную олимпиаду. В этом году, на мой взгляд, вариант получился значительно более интересным именно благодаря вам. Спасибо и тем, кто прислал свои задачи, но задачи нам почему-то не подошли. Я очень надеюсь, что вы не перестанете придумывать задачи и будете столь же отзывчивы на наши просьбы о помощи!

Я бы, конечно, хотел поблагодарить организаторов, потому что без их инициативы это мероприятие уж точно не состоялось бы. Организаторам всегда приходится не сладко, а работу их почти никто не видит.

Ну и конечно, я хотел бы поблагодарить своих коллег по методической комиссии!

Надеюсь олимпиада будет расти! И мы проведем ее еще лучше в следующем году. Пока что все задачи можно найти на аопсе. Но очень скоро мы доделаем и официальный файлик с условиями и решениями.
16👍6💔2
Опубликуем ещё одну задачу с олимпиады «JetBrains Youth Challenge», автор — К. А. Кноп.

В лиге младших классов она была 8-й из 8, и её решила всего 1 команда. Коллектив жюри ожидал большего количества решений этой задачи🙂

А оригинальная версия этой задачи была заметно сложнее — причём настолько, что методкомиссия даже не решилась вставлять её в лигу старших классов. Для продвинутых комбинаторов опубликуем и оригинальную формулировку тоже!

#мт_задача
11😇4👍2🔥2🗿2
набросал вчера относительно длинный черновик поста с примерами того, что хотел бы закодить, но не могу (и почему именно не могу…)

но сегодня что-то посмотрел на один из примеров и решил, что глаза боятся, а… короче, код получился недлинный, но унесу все ж в комментарии

===

интересно считать количество разбиений разных фигур на доминошки

про прямоугольники 2×N и числа Фибоначчи и так все знают

а вот на картинке ацтекский бриллиант порядка 4 — сколькими способами его можно разбить на доминошки? а бриллиант порядка N?

тут общий ответ можно угадать по ответам для небольших N, но перебирать руками тяжеловато (для N=4 вариантов уже больше тысячи), компьютерный эксперимент действительно полезен

про разные способы этот ответ доказывать есть интересная брошюра Е.Смирнова «Три взгляда на ацтекский бриллиант», https://mccme.ru/free-books/dubna/smirnov-aztec.pdf

***

более естественная, казалось бы, идея — считать замощения обычного квадрата N×N… но там по ответам для маленьких N ничего угадать не возможно

все же перебрал на компутере и замощения квадрата 8×8 — в качестве ответа получилось название лекции С.Смирнова https://www.mathnet.ru/present18250
9👍6🥰2🖕1
Forwarded from fp math (Fedor Petrov)
Всегда любил каплинги (они же спаривающие меры, они же многозначные отображения, они же полиморфизмы, они же планы перевозок и пр.) Идея в том, что для сравнения вероятностей двух событий надо умно реализовать их на одном вероятностном пространстве. Простой пример: красим каждую грань многогранника с вероятностью p независимо от остальных. Тогда вероятность того, что есть три попарно смежные покрашенные грани, возрастает с ростом p. Доказательство: пусть лучше каждая грань выбирает число от 0 до 1, и мы красим её, если число меньше p. Тогда наши события при разных p просто вложены друг в друга, и монотонность очевидна.

Лёша Куликов обратил внимание на свежую работу на эту тему.

Пусть n человек рассаживаются по k автобусам, выбирая, в который автобус сесть, равномерно и независимо. Рассмотрим вероятность p(k) того, что кто-то окажется единственным в своём автобусе (n считаем постоянным, а k переменным).

Теорема. p(k) возрастает по k при данном n.

Доказательство. Сравним p(k+1) и p(k). Можно считать, что дело обстоит так: сначала люди рассаживаются по k+1 автобусу, потом автобус семёрка ломается и люди оттуда рассаживаются по остальным. Нас интересуют вероятности двух событий: A - что до поломки был одинокий пассажир, B - что он есть после поломки и пересаживания. Сравним события A\B и B\A. Как могло произойти событие B\A? Скажем, Вася пересел из семёрки в пустую тройку, причём до поломки одиноких не было. Но до поломки могло быть так, что Вася - единственный в семёрке, потому что остальные, выбравшие семёрку, выбирали бы тройку (а всё остальное как было), а потом Вася пересел в тройку. В этом случае происходит A\B, и это имеет ту же вероятность.
4🔥2🖕2👍1