Onlinebme – Telegram
Onlinebme
4.88K subscribers
1.54K photos
603 videos
367 files
747 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر
پردازش تصویر-سیگنالهای حیاتی

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
مقدمه‌ای بر شبکه‌های مولد تخاصمی (GANs)
👩‍💻هما کاشفی امیری
🗓28 دی 1402

شبکه‌های GAN حوزه‌ای مهیج و به سرعت در حال تغییر هستند که نوید مدل‌های مولد با قابلیت بالا را می‌دهند. برای مثال می‌توانند نمونه‌های واقعی در طیف وسیعی از مسائل تولید کنند، مانند تبدیل تصاویر تابستان به زمستان، تبدیل تصاویر روز به شب و یا تولید تصاویری از چهره‌ی انسان که هیچ کس غیرواقعی بودن آنها را متوجه نمی‌شود. در این مقاله‌، معرفی اولیه‌ای از شبکه‌های مولد تخاصمی یا GANها را ارائه خواهیم کرد.


⭕️ جزئیات بیشتر👇
https://onlinebme.com/generative-adversarial-networks/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
7
دوره جامع و پروژه محور کار با سیگنال EEG با استفاده از پکیج MNE پایتون

بخش اول: مباحث پایه و عمومی

  🔹 نصب پکیج MNE_Python
  🔹 خواندن دیتاهای EEG به فرمت های مختلف (gdf, fif, mat, csv)
  🔹 کار با داده های EEGپیوسته و جداکردن ترایال ها
  🔹 پیش پردازش سیگنال
  🔹 تحلیل Time-Frequency سیگنال
  🔹 تجسم سازی سیگنال‌ها و نمایش نتایج
  🔹 انجام چندین پروژه ی عملی با الگوریتم های یادگیری ماشین

بخش دوم: انجام پروژه با شبکه‌های یادگیری عمیق

  🔸پروژه ی تشخیص بیماری صرع از روی سیگنال های EEG با الگوریتم های یادگیری عمیق
  🔸پروژه ی کلاسبندی سیگنال های EEG تصور حرکتی با الگوریتم های یادگیری عمیق (CNN)

  🔸و پروژه های دیگر


🔻نوع دوره: آنلاین همراه با ضبط ویدیوی جلسات
▪️مدت دوره: حدودا 30 ساعت

👩‍💻مدرس: هما کاشفی امیری

جهت ثبت نام به آیدی زیر پیام دهید:
آیدی تلگرام: @mne_python_admin

#python  #MNE_Python #EEG

@Onlinebme
👍19👎1🙏1
Onlinebme pinned a photo
Onlinebme
دوره جامع و پروژه محور کار با سیگنال EEG با استفاده از پکیج MNE پایتون بخش اول: مباحث پایه و عمومی   🔹 نصب پکیج MNE_Python   🔹 خواندن دیتاهای EEG به فرمت های مختلف (gdf, fif, mat, csv)   🔹 کار با داده های EEGپیوسته و جداکردن ترایال ها   🔹 پیش پردازش سیگنال…
MNE_PYTHON Course.pdf
1.1 MB
دوره‌ی تخصصی MNE-Python
🔷  فصل اول: مبانی سیگنال EEG
    🔹ریتم‌های سیگنال EEG
    🔹نویز و آرتیفکت
   🔹 پارادایم‌های ثبت
   🔹فیلترینگ
🔷  فصل دوم: آموزش MNE-Python
    🔹نصب
    🔹لود کردن دیتاهای EEG
   
      🔸 gdf,.fif,.mat,.csv
    🔹عملیات مقدماتی
        🔸متدهای Inplace
        🔸کار با موقعیت سنسورها
    🔹کار با داده‌ی پیوسته
       🔸ساختار داده Raw
       🔸کار با eventها
       🔸نمایش داده
    🔹پیش پردازش
       🔸شناسایی آرتیفکت
       🔸کار با bad channels
       🔸فیلترینگ
       🔸اعمال ICA
       🔸تنظیم رفرنس
    🔹جداسازی داده پیوسته
      🔸تجسم سازی Epoch
      🔸تبدیل Epochs به دیتافریم
    🔹تحلیل زمان-فرکانس
      🔸 EpochsSpectrum
🔘 پروژه: کلاسبندی EEG با یادگیری ماشین
🔷فصل سوم: انجام پروژه با شبکه‌های عمیق
     🔸تشخیص بیماری صرع
     🔸کلاسبندی با CNN
     🔸پیاده سازی مقاله
@Onlinebme
❤‍🔥112
Onlinebme
Pytorch and Neural Networks#Project05.pdf
Pytorch and Neural Networks#Project06.pdf
607.5 KB
دوره پایتورچ
🔷  فصل ششم: روش‌های بهینه‌سازی
🔘▪️ پروژه عملی: سری ششم
◼️Optimizers   
   🔻SGD
   🔺️SGD+ momentum
   🔻SGD+Nesterov momentum
   🔺AdaGrad 
   🔻RMSprop 
   🔺AdaDelta
   🔻Adam 
   🔺Nadam
   ▫️Classification-Regression

@Onlinebme
7👍2
حاشیه‌نویسی سیگنال پیوسته با استفاده از پکیج MNE پایتون

#MNE_PYTHON
👩‍💻هما کاشفی امیری
🗓12 بهمن 1402

✍️با استفاده از پکیج MNE پایتون می‌توانیم سیگنال پیوسته را نشانه‌گذاری یا به اصطلاح حاشیه‌نویسی کنیم و همچنین از این حاشیه‌نویسی‌ها در مراحل بعدی پردازش استفاده کنیم. در این مقاله، روند انجام آن را توضیح می‌دهیم.

⭕️ جزئیات بیشتر👇
https://onlinebme.com/raw-signal-annotation-using-mne-oython/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍9
Onlinebme
Pytorch and Neural Networks#Project06.pdf
Pytorch and Neural Networks#Project07.pdf
1.2 MB
دوره پایتورچ
🔷  فصل هفتم:
پیاده‌سازی شبکه‌های عصبی در پایتورچ
🔘 پروژه عملی: سری هفتم
◼️autograd    
◼️torch.optim
◼️torch.nn
◼️torch.nn.Module
◼️torch.nn.functional


@Onlinebme
8👍2
کتابخانه‌های ضروری مکمل کار با پکیج MNE پایتون

👩‍💻هما کاشفی امیری
🗓۲۶ بهمن ۱۴۰۲

به منظور کار با پکیج MNE پایتون، شناخت و یادگیری چند مورد از کتابخانه‌های پایتون ضروری است. این کتابخانه در خواندن دیتاست‌هایی مثل EEG، ذخیره سازی و جداسازی و تقسیم دیتاست به بخش‌های آموزش و آزمایش و همچنین استفاده از تکنیک‌های آموزش مدل مانند k-fold cross validation و … ضروری هستند. این کتابخانه‌ها عبارتند از: numpy، pandas و matplotlib و scikit-learn. در این مقاله به بررسی این کتابخانه‌های مهم پایتون و نقش آنها در کار با پکیج mne می پردازیم.

⭕️ جزئیات بیشتر👇

https://onlinebme.com/necessary-python-libraries-for-working-with-mne/

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍8
Onlinebme
Pytorch and Neural Networks#Project07.pdf
Pytorch and Neural Networks#Project08.pdf
2 MB
دوره پایتورچ
🔷  فصل هفتم: شبکه عصبی کانولوشنال


🔘 پروژه عملی: سری هشتم
◼️CNN
◼️Convolutional Layers
◼️Pooling Layers
◼️Image Processing
◼️Signal Processing
◼️Classification
◼️Regression


@Onlinebme
10