Onlinebme – Telegram
Onlinebme
4.88K subscribers
1.54K photos
603 videos
367 files
747 links
آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
ارائه‌دهنده‌ی پکیجهای آموزشی پروژه محور:
برنامه‌نویسی متلب-پایتون
شناسایی الگو
یادگیری ماشین
شبکه‌های عصبی
واسط مغز-کامپیوتر
پردازش تصویر-سیگنالهای حیاتی

تماس👇
09360382687
@onlineBME_admin

www.onlinebme.com
Download Telegram
Onlinebme
تحلیل احساسات مثبت و منفی در این مطالعه نشان میدهد که در باندهای فرکانسی (دلتا، تتا، آلفا، بتا و گاما) در افراد تجربه کننده ترس و شادی تفاوت معناداری وجود دارد، مخصوصا در باند بتا! @Onlinebme
اینم از نتایج مقاله
دقت طبقه بندی در بین سابجکت ها برای حالته 9 کلاسه: دقتها از کمترین به بیشترین (از چپ به راست) برای سابجکت ها نشان داده شده اند.

خاکستری روشن: دقت هر سابجکت
نوار روشن: میانگین دقت در بین سابجکتها
خط چین: دقت سطح شانسی (100/9=11.11)
تصویر پایین هم، ماتریس کانفیوژن میانگین گرفته شده است.

@Onlinebme
👍7
Forwarded from Onlinebme
⬛️◼️◾️ پکیجهای آموزشی Onlinebme ◾️◼️⬛️

🔆 اولین گروه آموزشیِ تخصصی و پروژه محور 🔆


برنامه‌نویسی متلب

🔲 اصول برنامه‌نویسی در متلب (رایگان)
▪️
مدت دوره: 11 ساعت
🔘 Link


برنامه‌نویسی پایتون 

⚪️ فصل 1: اصول برنامه‌نویسی پایتون 
◽️مدت دوره: 32 ساعت
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
◽️مدت دوره: 14 ساعت 30 دقیقه
🔘 Link


شناسایی الگو و یادگیری ماشین

⚠️ 140 ساعت ویدیوی آموزشی
🔹آموزش تئوری و مباحث ریاضیاتی طبق مراجع معتبر
🔹پیاده‌سازی مرحله به مرحله الگوریتمها
🔹انجام پروژه های عملی و تخصصی
🔹پیاده سازی گام به گام مقالات تخصصی
 
⚪️فصل 1 تا 4: از بیزین تا SVM
◽️مدت دوره: 75 ساعت
🔘 Link
⚪️فصل 5: یادگیری جمعی
◽️مدت دوره: 18 ساعت
🔘 Link
⚪️فصل 6: الگوریتم‌های کاهش بعد
◽️مدت دوره: 11 ساعت
🔘 Link
⚪️فصل 7:  الگوریتم‌های انتخاب ویژگی
◽️مدت دوره: 16 ساعت
🔘 Link
⚪️فصل 8: الگوریتم‌های خوشه‌بندی
◽️مدت دوره: 13 ساعت
🔘 Link


شبکه‌های عصبی

⚪️ پیاده سازی گام به گام شبکه های عصبی
◽️
مدت دوره: 25 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی کانولوشنی (CNN)
◽️
مدت دوره: 11 ساعت
🔘 Link
⚪️ دوره پروژه محور شبکه عصبی بازگشتی (RNN)
◽️
مدت دوره: 13 ساعت
🔘 Link
⚪️دوره پروژه محور کاربرد شبکه‌های عمیق در بینایی ماشین
◽️
مدت دوره: 16 ساعت
🔘 Link

⚪️ دوره پیاده‌سازی شبکه‌های عصبی با PyTorch
◽️مدت دوره: 70 ساعت
🔘 Link

پردازش سیگنال مغزی

⚪️ دوره جامع پردازش سیگنال مغزی(EEG)
◽️مدت دوره: 50 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر P300
◽️
مدت دوره: 28 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر SSVEP
◽️
مدت دوره: 33 ساعت
🔘 Link
⚪️ واسط مغز-کامپیوتر مبتنی بر تصور حرکتی
◽️
مدت دوره: 21 ساعت
🔘 Link
⚪️ پیاده‌سازی مقاله CSSP (BCI مبتنی بر MI)
◽️
مدت دوره: 7 ساعت و 30 دقیقه
🔘 Link
⚪️پیاده‌سازی مقاله RCSP (BCI مبتنی بر MI)
◽️
مدت دوره: 5 ساعت
🔘 Link
⚪️دوره تبدیل فوریه زمان کوتاه در پردازش سیگنال مغزی
◽️
مدت دوره: 8 ساعت
🔘 Link

⚪️دوره پردازش سیگنال مغزی با کتابخانه MNE پایتون
◽️مدت دوره: 33 ساعت
🔘 Link

دوره جامع پردازش تصویر

⚪️فصل 1: آستانه گذاری تصویر، تبدیلات شدت روشنایی و هندسی
◽️مدت دوره: 30 ساعت
🔘 Link
⚪️فصل 2: پردازش هیستوگرام تصویر
◽️مدت دوره: 6 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 3: فیلترهای مکانی
◽️مدت دوره: 15 ساعت و 30 دقیقه
🔘 Link
⚪️فصل 4: عملیات مورفورلوژی
◽️مدت دوره: 6 ساعت
🔘 Link


پردازش سیگنال قلبی

⚪️ دوره پردازش سیگنال ECG
◽️مدت زمان دوره:
37 ساعت و 45 دقیقه
🔘 Link


🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
👍91🤩1
سلام
امیدوارم حالتون خوب باشه
برای سال جدید چندین دوره خواهیم داشت که فعلا در فاز مطالعه و آماده‌سازی محتوا هستم.
دوره های مثل RNN، LSTM و ترکیبشون با CNN در تسکهای مختلف، ترنسفورمرها، یادگیری تقویتی، و یکی سری دوره های پردازش سیگنال (EEG, ECoG--LFB, SPIKE analysis)

پیش نیاز همه دوره ها آشنایی با «برنامه نویسی پایتون، مخصوصا شی گرایی» هست.

پیش نیاز دوره های یادگیری عمیق هم «دوره پیاده‌سازی شبکه های عصبی در پایتورچ» هست.

پیشنهاد میکنم اگه قصد شرکت در این دوره ها رو دارید، در تعطیلات نوروزی پیش نیازهارو نگاه کنید.
موفق باشید
محمد نوری زاده چرلو

🟡 Python 


⚪️ فصل 1: اصول برنامه‌نویسی پایتون 
🔘 Link
⚪️ فصل 2-3: کتابخانه NumPy و Matplotlib
🔘 Link

⚪️ فصل 4: برنامه نویسی شیء گرا در پایتون
🔘 Link


🟠 PyTorch 


⚪️ دوره پیاده‌سازی شبکه‌های عصبی با PyTorch
🔘 Link

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@onlinebme
10👍5🤩1
سلام
سال نو مبارک ❤️
امیدوارم سال جدید سالی پر از موفقیت، سلامتی، پر برکت و دل خوش باشه براتون. 🙏

🟣 برای سال جدید چندین دوره تدارک دیدیم که به صورت آنلاین، آفلاین و یا حضوری برگزار خواهند شد.

💡سعی میکنیم در سال جدید دوره ی حضوری هم برگزار کنیم تا دورهمی های علمی کنار هم داشته باشیم و فرصتی باشه برای تعاملات و همکاری های پژوهشی.

سال خوبی را برای همگی آرزو میکنم.
موفق باشید...
محمد نوری زاده چرلو
22👏4🔥2👍1
Onlinebme
نقشه راه یادگیری ماشین @onlinebme
نقشه راه یادگیری عمیق
@onlinebme
🔥73👍2🙏2
Onlinebme
نقشه راه یادگیری عمیق @onlinebme
نقشه راه پردازش سیگنال مغزی EEG
PDF

@Onlinebme
👍54🔥1🤩1🙏1
Onlinebme
تاثیر dropout و تعداد لایه های پنهان در عملکرد شبکه عصبی 🔷تعداد لایه پنهان بیشتر میتونه باعث overfitting شبکه عصبی شود. 💡از dropout میتوان برای کاهش overfitting شبکه عصبی استفاده کرد. @Onlinebme
💡راهنمای کلی در مورد تنظیم و تعیین هاپیرپارامترهای شبکه های عصبی

نرخ یادگیری: میزان یادگیری شبکه عصبی در هر epoch یا به عبارتی میزان تنظیمات وزنهای سیناپسی را کنترل میکند.
🔷 مقدار بیش از حد: باعث میشه مدل مینیمم اصلی رو رد کند و شبکه عصبی به سمت ناپایداری سوق پیدا کند.
🔷 مقدار بیش از حد کم: هم سرعت یادگیری بسیار پایین میاد و هم شبکه میتونه در مینیمم های محلی گیر کند!
💡 چه مقداری در نظر بگیریم بهتره؟ بستگی به هر مسئله و پروژه دارد. معمولا مقدار 0.001 پیشنهاد می‌شود، مخصوصا در روش بهینه سازی Adam. ولی بهتر است مقادیر دیگه هم بررسی بشه.
 
تعداد لایه های پنهان: لایه های پنهان معمولا کار نقش انتقال وردی به فضای ویژگی را اجرا می‌کنند، به عبارتی یک مسئله پیچیده را به مسئله ساده تر تبدیل میکنند. تعداد این لایه ها عمق و میزان پیچیدگی شبکه عصبی را مشخص می‌کند.
🔷 تعداد لایه های بیشتر: قابلیت شناسایی الگو در داده های پیچیده. اما هرچقدر این تعداد بیشتر شود تعداد پارامترها (وزنها و بایاس ها) به صورت تصاعدی افزایش پیدا میکند و همین مسئله آموزش شبکه عصبی را بسیار سخت میکند، از طرفی هرچقدر لایه ها بیشتر شود احتمال overfitting شبکه عصبی هم افزایش پیدا میکند.
🔷 تعداد لایه های کمتر: آموزش راحت شبکه عصبی و احتمال overfitting پایین. اما ممکن است با تعداد لایه های کمتر شبکه عصبی نتواند مسائل پیچیده را حل کند یا به عبارتی underfit شود.  
 
تعداد نورونها در لایه ها: تعداد نورون های لایه ی خروجی براساس مسئله تعریف می‌شود، اما تعداد نورنهای لایه های پنهان توسط کاربر تعیین می‌شود.
🔷 تعداد نورونهای بیشتر در لایه های پنهان: توانایی حل مسائل پیچیده، اما باعث افزایش تعداد پارامترهای یادگیری و احتمال overfitting  بالا.
🔷 تعداد نورونهای کمتر در لایه های پنهان: هزینه محاسباتی پایین، اما ممکن است شبکه نتواند مسائل پیچیده را حل کند.

💡چه تعداد در نظر بگیریم؟ بستگی به مسئله دارد، من معمولا تعداد نورونهای لایه های پنهان را برابر یا دو برابر تعداد ویژگی های ورودی در نظر میگیریم و بعدش اگه نیاز بود تعداد دیگری را بررسی میکنم.
 
تکنیک Dropout: یک روش رگوله سازی هست که به صورت تصادفی یه سری نورونها را در طول آموزش غیرفعال می‌کند. 
🔷 مقدار بیش از حد کم: تاثیر رگوله سازی کم، و شبکه مستعد overfitting هست.
🔷 مقدار بیش از حد زیاد: ممکنه باعث بشه شبکه عصبی نتونه الگوهای خوبی را یاد بگیرد.
💡مقدار پیش فرض: 0.2-0.5
 
روش L2 Regularization: در طول یادگیری وزنها رو به صورت تدریجی کاهش میدهد تا از weight exploding جلوگیری کند و از اشباع شبکه جلوگیری می‌کند.
🔷 مقدار بیش از  حد پایین: تاثیر کمتر، احتمال overfitting بالای شبکه عصبی
🔷 مقدار بیش از  حد بالا: ممکن است باعث underfit شدن مدل شود و نگذارد شبکه عصبی به خوبی یاد بگیرد.
💡مقدار پیش فرض: .0.01-0.001
 
تعداد تکه ها (batch size): مشخص می‌کند که چه تعداد نمونه در هر تکرار آموزش وارد شبکه عصبی شود.
بهتره تعداد بر مبنای 2 باشه تا متناسب با سایز بندی حافظه باشه. 1, 2, 4, 8,16, 32, 64, 128, 256, 512,…
🔷 تعداد پایین: میتواند باعث افزایش خاصیت عمومیت (generalization) شبکه عصبی شود، اما شبکه عصبی نیاز به تعداد epoch بیشتری جهت یادگیری پیدا می‎کند.
🔷 تعداد بالا (بیشتر از 256): باعث یادگیری سریع شبکه عصبی میشود اما ممکن است خاصیت عمومیت شبکه عصبی پایین بیاید.
💡مقدار پیش فرض:  32-256. من خودم معمولا 32 میگذارم، بعدش اگه نیازی بود تغییر میدهم.
 
 🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍8
چندتا از بهترین تصاویر تولید شده در روزای اخیر از دید OpenAI

@Onlinebme
🔥6👍4
Onlinebme
چندتا از بهترین تصاویر تولید شده در روزای اخیر از دید OpenAI @Onlinebme
The best of ChatGPT Images.pdf
23.3 MB
15 تا از بهترین تصاویر تولید شده در روزای اخیر از دید OpenAI
💡برای برخی تصاویر Prompt هم قرار داده شده.

@Onlinebme
🔥3
Onlinebme
💡ساختار یک نورون @Onlinebme
This media is not supported in your browser
VIEW IN TELEGRAM
این ویدیو فقط بخشی از فرآیند پیچیده و شگفت‌انگیز رو نشون می‌ده که مغز ما چطور به‌طور مداوم ارتباطات بین نورون را در پاسخ به تجربه های ما بازسازی میکند.

💡به قول دکتر Lara Boyd *هر شب که میخوابیم، فرداش یک شخص جدید هستیم، چرا که مغز ما ساختارش رو تغییر داده و ما دیگر آن فرد سابق نیستیم!

*  
Neuroscientist at the University of British Columbia

@Onlinebme
👍5🤩1
Onlinebme
این ویدیو فقط بخشی از فرآیند پیچیده و شگفت‌انگیز رو نشون می‌ده که مغز ما چطور به‌طور مداوم ارتباطات بین نورون را در پاسخ به تجربه های ما بازسازی میکند. 💡به قول دکتر Lara Boyd *هر شب که میخوابیم، فرداش یک شخص جدید هستیم، چرا که مغز ما ساختارش رو تغییر داده…
🔷 وقتی یک نورون فعال میشه، یک فعالیت الکتریکی از طریق آکسون ها ارسال شده و باعث آزادسازی نوروترنسمیترها در فضای سیناپسی (synaptic gap) میشه!

🔷 این مولکلها به گیرنده های نورونهای همسایه متصل میشن و باعث ایجاد یک پاسخ در نورون همسایه شده و در نتیجه آن سیگنال تولید شده به نورونهای دیگر منتقل میشه.

🔷 در طول زمان، این ارتباطات مداوم بین نورنها باعث تقویت اتصالات سیناپسی بین نورونها میشه، فرایندی که به آن انعطاف‌پذیری سیناپسی گفته میشه.

🔷 این روند برای یادگیری، شکل گیری حافظه، توانایی مغز در سازگاری با اطلاعات جدید یا بهبود بعد از یک آسیب بسیار حیاتی هست.

💡 شکل گیری یک سیناپس جدید، نه تنها باعث رهاسازی نوروترنسمیترها میشه، بلکه باعث رشد فیزیکی و شاخه دار شدن (ایجاد دندریت ها و آکسون جدید) در ساختار نورونها میشه.


🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
مهمترین و پرکاربردترین فرمول‌هایی که هر فردی باید بلد باشه...
فقط آخریش 😅
@Onlinebme
🤣11
🔘 ناکارآمدی هوش مصنوعی در ریاضیات🧐

💡همانطور که یان لیکان* باور دارد ، مدل‌های زبانی بزرگ (LLMها) فعلا نمیتونند المپیاد جدید ریاضی رو شکست بدهند.

🔷 یه مطالعه جدید به اسم «اثبات یا بلوف؟ بررسی عملکرد LLMها در المپیاد ریاضی آمریکا ۲۰۲۵» نشون میده که حتی بهترین مدل‌های هوش مصنوعی توی سوالات جدید المپیاد کمتر از %5 نمره گرفتن ( با اینکه توی سوالات قدیمی که قبلاً "دیده بودن" یا روشون آموزش دیده بودن، عملکرد خوبی داشتند).

💡نتیجه چیه؟ این مدل‌ها بیشتر به حفظ کردن تکیه دارن تا استدلال واقعی. برای کارهای تکراری یا آشنا خوبن، ولی هنوز نباید بهشون لقب "ابرهوشمند" بدیم. انگار این مدلها فعلا بیشتر برای شناسایی الگو خوب هستند تا درک واقعی و استدلال

*
لیکان کسی هست که شبکه‌های عصبی کانولوشنی یا همون CNNها رو به دنیا معرفی کرد (یه مدل انقلابی که مغز کامپیوترها رو به چشمی هوشمند تبدیل کرد!). الان هم استاد دانشگاه نیویورک و مدیر ارشد هوش مصنوعی توی شرکت متا (فیسبوک سابق) هست.
🔘لینک مقاله
https://arxiv.org/abs/2503.21934

🏢 آکادمی آنلاین مهندسی پزشکی و هوش مصنوعی
@Onlinebme
👍5👌2
Onlinebme
🔘 ناکارآمدی هوش مصنوعی در ریاضیات🧐 💡همانطور که یان لیکان* باور دارد ، مدل‌های زبانی بزرگ (LLMها) فعلا نمیتونند المپیاد جدید ریاضی رو شکست بدهند. 🔷 یه مطالعه جدید به اسم «اثبات یا بلوف؟ بررسی عملکرد LLMها در المپیاد ریاضی آمریکا ۲۰۲۵» نشون میده که حتی بهترین…
نکات جالبی که در مقاله بهشون اشاره شده

💡 رایج‌ترین خطایی که بین شرکت‌کنندگان انسانی دیده می‌شه، ناتوانی در پیدا کردن راه‌حل درسته. ولی نکته جالب اینه که انسان‌ها معمولاً خودشون می‌دونن که جوابشون درسته یا نه. ولی همه مدلهای زبانی حتی وقتی مسئله رو اشتباه حل میکردند با از اطمینان ادعا میکردند که مسئله رو حل کرده اند! یعنی حتی توانایی درک درست یا غلط بودن راه حل خودشون رو هم ندارند!
اینو من در دوره پایتورچ که برای اثبات برخی روابط بهینه سازی از ChatGPT کمک میگرفتم خیلی میدیدم. جالبیش اینجا بود که وقتی بهش میگفتم اشتباه اثبات کردی ازم تشکر میکرد و دوباره همون مسیر اشتباه رو میرفت 😁

⚠️مقاله در ادامه ذکر میکنه که این تفاوت (بین مدلها و انسانها) یه چالش بزرگ برای استفاده از مدلها در زمینه های ریاضیات ایجاد میکنه، چرا که نمیتونیم به جوابهای مدلها اعتماد کنیم! مگر اینکه توسط یک انسان دقیق بررسی بشوند.

💡نکته بعدی اینه که نویسندگان مقاله در آزمایشات مشاهده کرده اند این بود که مدلها مشکل اساسی در خلاقیت دارند، بیشتر مدلها فقط یک روش که اونم معمولا اشتباه بوده رو بارها امتحان میکردن و اصلا سراغ روش دیگه ای نمیرفتند!

@Onlinebme
👍3👌1