تکامل فیزیکی – Telegram
تکامل فیزیکی
2.22K subscribers
518 photos
81 videos
49 files
297 links
انسان همواره در پی تکامل است...
چه تکاملی بهتر از تکامل علمی، تکاملی منجر به تمدن نوین علمی.


روابط عمومی گروه تکامل فیزیکی:
@physical_evolution_PubRelat

🔴 حق نشر مطالب تولیدی، برای صاحب و تولید کننده اثر محفوظ می باشد.
Download Telegram
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 مدارهای کوانتومی (قسمت ۳):
مدارهای کوانتومی، دقیقا تعمیم مدارهای کلاسیکی نیستند. به این معنا که هر عملگری که در مدارهای کلاسیکی مجاز می باشد، در مدارهای کوانتومی مجاز نیست.

یکی از این عملگرها، بازخورد (feedback) است. به بیان دیگر، در مدارهای کوانتومی نمیتوان حلقه داشت.

کانال تکامل فیزیکی
@physical_evolution
👍2
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 مدارهای کوانتومی (قسمت ۴):
مدارهای کوانتومی، دقیقا تعمیم مدارهای کلاسیکی نیستند. به این معنا که هر عملگری که در مدارهای کلاسیکی مجاز می باشد، در مدارهای کوانتومی مجاز نیست.

یکی از کارهای رایج در مدارهای کلاسیک، این است که چند سیم را به هم متصل کرده و یک سیم در خروجی داشته باشیم. این عملگر که معروف است به عملگر FANIN در مدارهای کوانتومی ممنوع است. علت ممنوع بودنش هم این است که این عملگر برگشت ناپذیر است، در حالی که یک عملگر برگشت ناپذیر نمیتواند یک عملگر یکانی باشد.

کانال تکامل فیزیکی
@physical_evolution
#تعاریف_ریاضیات #ریاضی #ریاضی_فیزیک

🟡 فضای برداری (Vector space):
فضاهای برداری همواره تحت یک میدان تعریف میشوند. تعریف میدان، قبل تر آمده است. یک مجموعه به همراه دو نگاشت، تحت یک میدان را فضای برداری مینامند اگر در خاصیت هایی صدق کند. این خاصیت را در تصویر آمده است.

فضاهای برداری در واقع تعمیم فضای بردارهای فضای سه بعدی یا همان R^3 است. ولی در این تعمیم، مفهومی بنیادی تر شکل میگیرد و چارچوبی واحد برای بسیاری از مباحث ریاضی به وجود می آورد. ساده ترین مثالی که میتوان از کابردهای فضاهای برداری آورد این است که تمامی حالت های کوانتومی، بردارهای یک فضای برداری (هیلبرت) هستند.

کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 مدارهای کوانتومی (قسمت ۵):
مدارهای کوانتومی، دقیقا تعمیم مدارهای کلاسیکی نیستند. به این معنا که هر عملگری که در مدارهای کلاسیکی مجاز می باشد، در مدارهای کوانتومی مجاز نیست.

یکی دیگر از کارهای رایج هر مدار کلاسیکی این است که از یک سیم، چند سیم دیگر منشعب کنیم و در واقع کپی برداری کنیم. این عملگر، که درست برعکس عملگر FANIN است، معروف است که عملگر FANOUT. این عملگر نیز در مدارهای کوانتومی ممنوع است. در واقع، هیچ عملگر یکانی ای وجود ندارد که بتواند از یک حالت یک کپی تهیه کند. این بحث جالب و مهم ممنوع بودن کپی کردن، در ادامه به تفصیل بررسی خواهد شد.

کانال تکامل فیزیکی
@physical_evolution
👍31
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 مدارهای کوانتومی (قسمت ۶):
یکی از عملگرهای رایج در مدارهای کوانتومی، عملگر controlled-U است. این عملگر که به نوعی تعمیم CNOT است، تشکیل شده از یک گیت U است که هر یکانی دلخواهی میتواند باشد که روی تعدادی کیوبیت اثر میکند.

عمل این گیت توسط یک کیوبیت کنترلی، کنترل میشود به این صورت که اگر کیوبیت کنترل در حالت <0| باشد، گیت U عمل نمیکند و اگر کیوبیت کنترل در حالت <1| باشد، گیت U عمل خواهد کرد.

کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 مدارهای کوانتومی (قسمت ۷):
یکی دیگر از عملگرهای اساسی هر مدار کوانتومی، اندازه گیری است. عمل اندازه گیری یک کیوبیت را به یک بیت کلاسیک احتمالاتی تبدیل میکند. برای جلوگیری از گیج شدن، یک بیت کلاسیک احتمالاتی را با دو خط موازی نشان میدهیم.

نماد اندازه گیری در مدارهای کوانتومی، معمولاً به صورت یک "سنجه" مشخص میشود. عمل اندازه گیری، همواره در پایه های محاسباتی صورت میگیرد. در صورتی که علاقه مند به اندازه گیری در پایه های دیگر باشیم، باید با ترکیب گیت های مختلف، ابتدا یک تبدیل پایه انجام دهیم و سپس اندازه گیری را اعمال کنیم.

معمولاً در انتهای هر مدار کوانتومی، عمل اندازه گیری انجام میشود تا بتوان اطلاعات ناشی از مدار را به دست آورد.

کانال تکامل فیزیکی
@physical_evolution
#نجوم #رصد #گزارش

🟡 گزارش رصدی از شهر کاشان، کویر مرنجاب

🔸 قسمت اول: رصد کمربند جبار

بعد از سوار شدن به اتوبوس و گذراندان حدود 6 ساعت به مقصد خودمون یعنی شعر کاشان رسیدیم . با توجه به برنامه اردو روز جمعه حوالی ساعت 5 به محل رصد واقع در کویر مرنجاب رسیدیم. بعد از صرف ناهار تصمیم گرفته شد که به بالای تپه های بلند تر بریم تا هم زمانی به ستاره بدهیم که خودشون رو نشان دهند و هم از آلودگی های نوری دور شده باشیم . حدود ساعت 6 در مکان رصد مستقر شدیم و تمامی وسایل رصدی از جمله دوربین عکاسی ، دوربین شکاری و پایه دوربین رو در انجا قرار دادیم . تا غروب زیبای تنهای ستاره منظومه شمسی حدود 30 دقیقه زمان داشتیم ، بنابراین دوربین را روی پایه متصل کردیم و کار های لازم برای تنظیم دوربین رو انجام دادیم . حالا که که 3 الی 5 دقیقه تا غروب فرصت داشتیم باید چندین شات به عنوان تست میگرفتیم تا برای شات های اصلی کاملا اماده بشیم چون رویداد های رصدی اکثرا چندین ثانیه بیشتر طول نخواهند کشید . عکاسی و گرفتن تایم لپس ها از جهات متفاوت از غروب زیبای خورشید تمام شده بود حالا باید منتظر میشدیم تا اسمان کاملا تاریک شود و ستاره ها و سیارات بیرون بیایند . ساعت 7 دیگر کاملا ستاره ها و سیارات بیرون امده بودند به طوری که خوشه راه شیری هم به صورت کامل در اسمان شب مشخص بود. یکی از بهترین اشکال یا اجسام اسمانی که برای کمک به رصد کمر بند جبار است، متشکل از سه ستاره است و بین انها سحابی جبار یا شکارچی قرار دارد. اطراف این کمربند اجرامی بسیار قرار دارند؛ بنابراین اولین بخش رصد ما از اسمان شب کمربند جبار بود .

🖋 منجم و نویسنده : طاها رستملو

کانال تکامل فیزیکی
@physical_evolution
👍5
#نجوم #رصد #گزارش

🟡 گزارش رصدی از شهر کاشان، کویر مرنجاب

🔸 قسمت دوم: رصد مریخ

بعد از گرفتن چندین عکس از اسمان شب و کمر بند جبار حالا وقت این بود که اجرام اسمانی رو به بچه ها هم نشان دهیم.

بعد پیدا کردن و رصد کمر بند جبار راحت ترین سیاره برای رصد مریخه.
این سیاره با رنگ سرخش انقدر زیباست که چشم انسان را در بین این همه جسم اسمانی به خودش جلب میکنه و این باعت میشه که رصد ان بسیار جذاب و راحت باشه. جالبه بدونید که رنگ این سیاره انقدر سرخ هستش که اگر در مکانی باشید که الودگی هوا و نوری زیاد وجود نداشته باشد میتوانید مریخ را بسیار ساده از بقیه سیارات و اجرام تشخیص بدهید. در روز رصد در کویر مرنجاب نقطه رصدی ما به گونه ای بود که برای رصد بهتر مریخ باید زمان بیشتری را صبر می کردیم تا اسمان تاریک تر شود چون تلسکوپ حرفه‌ای به همراه نداشتیم نمیتوانستیم مریخ را با وضوح به بچه ها نشان دهیم؛ بنابراین کمی صبر کردیم تا اسمان کاملا تاریک شد. حالا هر جسمی رو که مورد نظر داشتیم میتوانستیم رصد کنیم. برای رصد مریخ در مرحله اول باید کمربند جبار رو شناسایی و رصد کنیم بعد کمی اطراف ان رو نگاه میکنیم و به جسمی تقریبا بزرگ برسیم که رنگی قرمز مایل به زرد دارد، این جسم سیاره چهارم منظومه خورشیدی، یعنی مریخ هست که در سمت شمال غربی کمربند جبار قرار دارد.

🖋 منجم و نویسنده : طاها رستملو

کانال تکامل فیزیکی
@physical_evolution
👍3
🔸 تصویر ثبت شده توسط تیم رصدی

کانال تکامل فیزیکی
@physical_evolution
1👍1
🔸 تصویری از سیاره مریخ، از نمای نزدیکتر

کانال تکامل فیزیکی
@physical_evolution
🤩1
#نجوم #رصد #گزارش

🟡 گزارش رصدی از شهر کاشان، کویر مرنجاب

🔸 قسمت سوم (پایانی): ستاره‌ی قطبی و زهره


دو تا از اجرام بسیار پر نوری که میتوانید تقریبا هر شب در اسمان شب رصد کنید سیاره زهره و ستاره قطبی هستند که قدر ظاهری آن ها بسیار زیاد است و ما میتوانیم انها رو حتی در اسمان شهر هم رصد کنیم.

شاید از خودتان بپرسید که اگر یک جسم را میتوان در اسمان شهر هم دید پس دیگر برای چه در کویر از رصدش لذت میبریم؟ باید بگم که پروسه رصد در کل پروسه‌ی بسیار بسیار جذاب و زیبایی است و چون اسمان کویر بسیار صاف تر از اسمان شهر هستش و آلودگی نور در دل کویر کمتر از وسط شهر می‌باشد، بنابراین با یک دوربین دو چشمی بسیار ساده هم میتوانیم با وضوح بسیار خوب آن ها رو رصد کنیم. احتمالا تا به حال شنیده اید که میگویند در گذشته که جی پی اس و نقشه های پیشرفته نبوده از ستاره قطبی برای مسیریابی و مخصوصا کشتی رانی استفاده می‌شده است.

حالا این همه ستاره چرا ستاره قطبی؟ به دو دلیل ، اول اینکه گفتیم که ستاره قطبی نور و قدر ظاهری بسیار بالایی دارد و دوم اینکه ستاره قطبی دقیقا جهت شمال را به ما نشان می‌دهد. در گذشته‌های دور آلودگی هوا و نوری چندانی وجود نداشت و بنابراین تقریبا تمامی اجسام آسمانی را میتوانستند رصد کنند. این اتفاق کار را برای پیدا کردن ستاره قطبی سخت میکرد‌، در این زمان راه کاری ارائه دادند. گفتند که اگر ستاره وسط یعنی سوم ذات الکرسی، اخرین ستاره دب اکبر و اولین ستاره دب اصغر را به یکدیگر متصل کنیم به ستاره قطبی میرسیم و این راه کاری مفید بود برای مردم گذشته تا بتوانند جهت شمال را شناسایی کنند. یک نکته جالب هم در شب رصد این بود ستاره قطبی و زهره دقیقا رو به روی یکدیگر بودند.

🖋 منجم و نویسنده : طاها رستملو

کانال تکامل فیزیکی
@physical_evolution
👍4
🔸 تصاویر ثبت شده توسط تیم رصدی

کانال تکامل فیزیکی
@physical_evolution
3👍2😁1
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 مثال هایی از مدارهای کوانتومی (حالت های بِل):
در این تصویر مدار کوانتومی که برای ساختن حالت های بل مورد استفاده قرار میگیرد را به تصویر کشیده ایم. با اعمال یک گیت هادامارد و یک گیت CNOT میتوان از پایه های محاسباتی شروع کرد و همه ی حالت های مختلف بل را ساخت. چنین مداری برای ایجاد و تولید درهم تنیدگی بسیار ضروری است.
خود حالت های بل نیز بسیار در پروتکل های مختلف اطلاعات کوانتومی مورد استفاده هستند. بنابراین اهمیت چنین مدار کوانتومی غیر قابل انکار است.

کانال تکامل فیزیکی
@physical_evolution
#کتاب #فیزیک #پراگماتیسم #فلسفه_و_علم #تاریخ_علم

فیزیک و پراگماتیسم (خاطره‌ای از ورنر هایزنبرگ)

پیش از آنکه به سر کار جدیدم بروم، به من مرخصی دادند تا سفری برای تدریس به آمریکا بکنم. بنابراین در فوریه 1929 در یک روز بسیار سرد از برمرهاون با کشتی عازم نیویورک شدم.... بیشتر وقت‌ها کار ما به بحثهای طولانی درباره تحولات اخیر فیزیک اتمی می‌کشید. بخصوص یکی از این بحثها را که با همراه جوانم، به نام "بارتون هواگ" داشتم به خاطر دارم. ... من چیز غریبی را که در این سفر حس کرده بودم برای او بازگو کردم: به خلاف اروپاییها که نظرشان نسبت به جنبه‌های انتزاعی و تجسم ناپذیر فیزیک جدید، از قبیل دوگانگی ذره و موج و خصلت آماری قوانین طبیعی، توام با اکراه و غالباً دشمنی آشکار بود، به نظر می‌آمد که بیشتر فیزیکدانان آمریکایی بدون آنکه زیاد ملاحظه‌کاری به خرج دهند، آمادگی پذیرش رهیافت جدید را دارند. ... او در جواب گقت: « شما اروپاییها، و بخصوص شما آلمانیها، تلقی‌تان از این مفاهیم جدید طوری است که گویی پای اصول در میان است، اما نظر ما ساده‌تر است. ... سرانجام مطالعه فرایندهای اتمی به ما نشان داد که نه فیزیک کلاسیک می‌تواند از عهده توجیه شواهد تجربی برآید و نه الکترودینامیک و بنابراین فیزیکدانان خواه‌ناخواه مجبور شدند که از قوانین و معادلات پیشین فراتر بروند و در نتیجه مکانیک کوانتومی به وجود آمد. علی‌الاصول رفتار فیزیکدانان، و حتی فیزیکدانان نظری، شبیه مهندسی است که پل تازه‌ای می‌سازد. ... »
(هایزنبرگ) پرسیدم: «پس شما اصلا تعحب نمی‌کنید که یک الکترون در یک مورد مثل موج به نظر بیاید و در مورد دیگر مثل ذره؟ به نظر شما کل قضیه چیزی نیست جز تعمیم فیزیک قدیم، منتها به طرق نامنتظر؟»
(هواگ) « چرا تعجب می‌کنم؛ اما به هر حال می‌فهمم که چنین چیزهایی در طبیعت رخ می‌دهد و کاری از هم از دست ما ساخته نیست. ... شاید لازم باشد این ساخت‌های جدید را "موج‌-ذره" بنامیم و مکانیک کوانتومی را توصیف ریاضی رفتار آن‌ها بدانیم.»
(هایزنبرگ) « نه، به نظر من این راه حل بیش از انداره ساده است. چون به هر حال، موضوع بحث ما از خصوصیات الکترون نیست، بلکه از خصوصیات هر نوع ماده و هر نوع تابش است. ... »

(بارتون هواگ) « اما شما چرا نمی‌خواهید مکانیک نسبیتی را شکل اصلاح شده مکانیک نیوتونی بنامید؟»
(هایزنبرگ) « من فقط با اصطلاح "شکل اصلاح شده" مخالفم، زیرا ممکن است منشا بدفهمی‌هایی بشود، ... . سوء تفاهم، بخصوص، با این تصور شما رابطه دارد که پیشرفت در فیزیک از نوع پیشرفت در زمینه مهندسی است. به تصور من، مقایسه دگرگونیهای اساسیی که در گذر از مکانیک نیوتونی به مکانیک نسبیتی یا کوانتمی رخ می‌دهد با اصلاحاتی که مهندسان در کار خود به عمل می‌آورند،‌ از بیخ و بن اشتباه است. چون اصلاحاتی که مهندسان می‌کنند، مستلزم تغییر مفاهیم بنیادی ایشان نیست و در نظر ایشان، اصطلاحات فنی همان معنای قدیمی خود را حفط می‌کنند. ... اما حوزه‌هایی در تجربه وجود دارند که در آنجا از نظام مفاهیم مکانیک نیوتونی کاری ساخته نیست. در این حوزه‌ها به ساختهای مفهومی جدید از نوعی که در نظریه نسبیت یا مکانیک کوانتومی عرضه ‌می‌شود، نیاز داریم. ... »

📚 فصل فیزیک و پراگماتیسم از کتاب جزء و کل (نویسنده: ورنر هایزنبرگ)

کانال تکامل فیزیکی
@physical_evolution
#نیرو، #نیروهای_بنیادین، #اتحاد_نیروها
#متن_علمی، #گرانش، #الکترومغناطیس

🟡 نیروهای بنیادین طبیعت (قسمت ۱):

📝 ذرات بنیادین عالم مانند پروتون، نوترون و الکترون برای ایفای نقش در جهان هستی و انجام کنش متقابل با یکدیگر از چهار قانون اساسی پیروی می‌کنند که مجموع آنها را قوانین چهارگانه طبیعت می‌نامیم. اگر جهان هستی را به یکی از زبان‌های بشری تشبیه کنیم، ذرات در حکم واژه‌ها و نیروها در نقش دستور زبان هستند. البته دستور زبان بسیار ساده ای که توانسته فقط با استفاده از چهار قاعده اصلی، کتابی با شکوه و زیبا بیافریند و عامل پیدایش موجودات هوشمندی شود که صفحات این کتاب را ورق بزنند، در مورد آن نیروها بیندیشند و از عهده توصیف کمی و کیفی آن بخوبی برآیند. شواهد محکمی در دست است که نشان می دهد منشا این چهار نیرو ابتدای خلقت، یک ابرنیروی واحد بوده که با افت شدید دما در نخستین لحظات پس از بیگ بنگ به چهار نیروی متفاوت شکسته شده و کنترل جهان هستی را به دست گرفته است. آشناترین و ملموس ترین عضو این خانواده، نیروی گرانش است.

نیروی گرانش:

گرانش، نیروی جاذبه‌ای است که میان همه ذرات دارای جرم وجود دارد. افتادن اجسام بر اثر نیروی گرانش میان تک تک ذرات کره زمین و همه ذرات جسم مورد نظر روی می‌دهد. متراکم شدن مواد پس از انفجار بزرگ و تشکیل کهکشان‌ها و همین‌طور تجمع گازها درون کهکشان‌ها برای تشکیل ستارگان، حاصل نیروی گرانش است. چرخش ماه به دور زمین و زمین به دور خورشید و خورشید به دور مرکز کهکشان راه شیری هم بدون وجود گرانش ممکن نیست. گرانش به حرکت اجرام آسمانی نظم و آهنگ می‌بخشد.
گرانش دو ویژگی منحصربه فرد دارد. نخست این که این نیرو همیشه جاذبه است. حتی دو ذره با بار الکتریکی یکسان هم یکدیگر را بر اثر گرانش جذب می‌کنند، ولی این نیرو به قدری ضعیف است که تاب مقاومت در برابر نیروی دافعه الکتریکی آن دو را ندارد. ویژگی دیگر گرانش دوربرد بودن آن است. در فواصل کیهانی که جرم ساختارها چشمگیر است، نیروی گرانش بخوبی اثر خود را آشکار می‌کند. فاصله میان کهکشان راه شیری و کهکشان آندرومدا حدود 2.5 میلیون سال نوری است؛ ولی نیروی گرانش میان آن‌ها، از این فاصله هم موثر است و این دو کهکشان با سرعت 300 کیلومتر بر ثانیه در حال نزدیک شدن به یکدیگر هستند و حدود 4.5 میلیارد سال دیگر به هم برخورد خواهند کرد.

نيروي الكترومغناطيس:

این نیرو، اجزای ماده را کنار هم می‌نشاند. الکترون را در اتم مقید و با پیوند اتم‌ها به یکدیگر مولکول‌ها و ساختارهای بزرگ‌تر را تولید می‌کند. این نیرو مسئول همه تغییرات شیمیایی است و اساس کار آن یک جمله معروف است: «بارهای همنام یکدیگر را دفع و بارهای غیرهمنام همدیگر را جذب می‌کنند.» چرخش الکترون به دور پروتون برخلاف چرخش زمین به دور خورشید نمی‌تواند ناشی از نیروی جاذبه باشد، چراکه با جرم ناچیز الکترون و پروتون نیروی گرانش حاصل بسیار ناچیز و قابل چشم پوشی است. بنابراین به نیرویی با سازوکاری متفاوت نیاز داریم. نیروی الکترومغناطیسی باعث می‌شود الکترون با بار منفی جذب بار مثبت هسته اتم شود و با چرخش به دور هسته، اتم‌های پایدار به وجود بیاورد. نیروی الکترومغناطیسی 36^10 بار قوی تر از گرانش است؛ یعنی اگر بزرگی گرانش را به اندازه یک نخود تشبیه کنیم، بزرگی نیروی الکترومغناطیسی از کل عالم هستی بزرگ‌تر است. زمانی که یک براده آهن جذب آهن ربا می‌شود، یک مجموعه کوچک با تعداد محدودی الکترون و پروتون بر کل نیروی گرانش حاصل از برهم کنش همه ذرات براده آهن با همه ذرات کره زمین غلبه می‌کند. نیروی الکترومغناطیسی با ایجاد پیوند میان اتم‌ها و مولکول‌ها ماده را می‌سازد و به آن انسجام می‌بخشد و باعث می‌شود سیب پس از افتادن از درخت به درون زمین فرو نرود.
ولی اگر نیروی الکترومغناطیسی میان بارهای همنام باعث می‌شود آنها یکدیگر را دفع کنند چگونه ممکن است 92 پروتون با بار مثبت همراه 143 نوترون، درون هسته یک اتم تجمع کنند و اتمی مانند اورانیوم 235 را به وجود آورند؟ پاسخ به این پرسش، دانشمندان را به کشف نیروی سوم یعنی نیروی هسته‌ای قوی هدایت کرد.

ادامه👇

کانال تکامل فیزیکی
@physical_evolution
#تعاریف_ریاضیات #ریاضی #ریاضی_فیزیک

🟡 نمادگذاری دیراک:
در نوشتار فیزیکدانان بسیار متداول است که برای محاسبات جبر خطی از نمادگذاری براکت استفاده کنند. این نمادگذاری، ظاهراً، اولین بار توسط دیراک معرفی شده است.

کانال تکامل فیزیکی
@physical_evolution
👍2
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 مثالهایی از مدارهای کوانتومی (فرآبرد کوانتومی):
تا به حال این فکر کرده اید که اگر بخواهید حالت یک کیوبیت را انتقال دهید، چه باید بکنید؟ این را در نظر بگیرید که همیشه انتقال فیزیکی کیوبیت ها ممکن نیست. بنابراین ممکن است به این فکر کنید که حالت کیوبیت را بر حسب پایه های محاسباتی بسط دهم و سپس ضرایب این بسط را از طریقی ارسال کنم. اما این نکته را نیز باید در نظر بگیرید که حالت یک کیوبیت، یعنی همان ضرایب بسط، قبل از اندازه گیری برای ما مشخص نیستند.
در این تصویر، پروتکلی بسیار مهم که به «فرآبرد کوانتومی» معروف است، را به تصویر کشیده ایم. در این پروتکل هیچ نیازی ندارید که حالت کیوبیت را از قبل بدانید. فقط کافی است که یک جفت کیوبیت درهم تنیده، که در حالت بل آمده شده اند را مابین خود و دیگری به اشتراک بگذارید و با اندازه گیری هایی مشخص، حالت را به دیگری منتقل کنید. در نهایت هم با ارسال دو بیت کلاسیک، به دیگری، پروتکل کامل میشود.
البته اشتباه نشود، این روش هیچ اطلاعاتی را سریع تر از نور منتقل نمیکند!

کانال تکامل فیزیکی
@physical_evolution
👍4
#نیرو #نیروهای_بنیادین #اتحاد_نیروها #متن_علمی #نیروی_هسته_ای

🟡 نیروهای بنیادین طبیعت (قسمت ۲):

نيروي هسته‌ای قوی:

نیرویی که باعث پایداری هسته اتم می‌شود نیروی هسته‌ای قوی نام دارد. پسوند قوی، از شدت این نیرو نسبت به نیروی الکترومغناطیسی حکایت دارد. نیروی هسته‌ای قوی به قدری کوتاه برد است که حوزه تاثیر آن به درون هسته اتم محدود است و ما هیچ گاه نمی‌توانیم احساس مستقیم و درک ملموسی مانند آنچه از گرانش و الکترومغناطیس داریم از آن داشته باشیم. اگر یک متر را به ده میلیارد قسمت مساوی تقسیم کنیم، به فاصله ای می رسیم که می توانیم نیروی الکترومغناطیسی بین دو ذره باردار را احساس کنیم ولی برای احساس نیروی هسته‌ای قوی باید یک متر را ابتدا به یک میلیارد قسمت و سپس هر قسمت را به یک میلیون قسمت دیگر تقسیم کنیم.
پروتون و نوترون که خود از ذراتی کوچک تر به نام کوارک ساخته شده، تحت نفوذ این نیروی قوی قرار دارد. البته اگر یک نوترون پر انرژی وارد یک هسته سنگین مانند اورانیوم 235 شود نیروی الکترومغناطیسی بر نیروی هسته‌ای قوی چیره خواهد شد و با متلاشی شدن هسته، انرژی فراوانی آزاد می‌شود. این پدیده شکافت هسته‌ای نام دارد و در ساخت بمب اتم از همین قاعده ساده استفاده می‌شود. ولی نیروها لزوما دو ذره را به سمت یکدیگر نمی‌کشند. نیروی چهارم نیرویی است که نقش اصلی آن کمک به واپاشی عناصر، تبدیل آنها به عناصر دیگر و ایجاد اثر رادیواکتیویته است.

نیروی هسته ای ضعیف:

این نیرو باعش واپاشی نوترون و پروتون و تبدیل آنها به یکدیگر است که در نتیجه به هسته یک عنصر به عنصر دیگر تبدیل می‌شود. این تبدیل عناصر، عامل اصلی پرتوزایی و تولید انرژی هسته‌ای است. نقش این نیرو در واکنش‌های هسته‌ای خورشید و تبدیل هیدروژن به هلیم بسیار حیاتی است. این نیرو 11^10 مرتبه از نیروی الکترومغناطیسی ضعیف‌تر است و برد آن خیلی کوتاه‌تر از نیروی الکترومغناطیسی و با برد نیروی هسته‌ای قوی قابل مقایسه است.

اتحاد نيروها:

اواسط قرن 19 میلادی کلارک ماکسول توانست نشان دهد نیروهای الکتریکی و مغناطیسی که تا آن زمان تصور می‌شد دو نیروی متفاوتند در واقع دو روی یک سکه به نام نیروی الکترومغناطیسی هستند. شاید خود ماکسول هم از درک جایگاه ویژه کشف شگفت انگیزش باخبر نبود، ولی زمانی که اواخر قرن 20 عبدالسلام و واینرگ نشان دادند نیروی الکترومغناطیسی و هسته‌ای ضعیف هم در انرژی‌های بالا به یک نیرو به نام الکتروضعیف تبدیل می‌شوند اوضاع دگرگون شد. ظاهرا همه نیروها در انرژی‌های بالا مانند آنچه بلافاصله پس از انفجار بزرگ وجود داشت با هم متحد می‌شوند. البته تلاش‌هایی که تاکنون برای اثبات اتحاد همه نیروها صورت گرفته هنوز به پاسخ قطعی منجر نشده است.

منبع:
لینک صفحه وب

کانال تکامل فیزیکی
@physical_evolution