تکامل فیزیکی – Telegram
تکامل فیزیکی
2.22K subscribers
518 photos
81 videos
49 files
297 links
انسان همواره در پی تکامل است...
چه تکاملی بهتر از تکامل علمی، تکاملی منجر به تمدن نوین علمی.


روابط عمومی گروه تکامل فیزیکی:
@physical_evolution_PubRelat

🔴 حق نشر مطالب تولیدی، برای صاحب و تولید کننده اثر محفوظ می باشد.
Download Telegram
#تعاریف_ریاضیات #ریاضی #ریاضی_فیزیک

🟡 قضیه: یک زیرفضا، یک فضای برداری است.
در این قضیه اثبات میشود که هر زیرفضا، خود یک فضای برداری است (دقت شود که در تعریف زیرفضا، فضای برداری بودن به صورت مستقیم نیامده است و باید چنین چیزی ثابت شود).

کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 الگوریتم دویچ:
فرض کنید که یک تابع تک-بیت ورودی و تک-بیت خروجی به شما داده اند و از شما می پرسند که مقدار تابع به ازای ورودی های مختلفش یکسان است یا متفاوت. طبیعتاً برای اینکه بفمهید این تابع کدام حالت را دارد، باید دو بار به ازای مقادیر مختلف ورودی، محاسبه اش کنید.
اما همانطور که در پست های قبلی نشان داده ایم، در یک کامپیوتر کوانتومی، میتوان از خاصیت توازی کوانتومی استفاده کرد. در این تصویر، الگوریتم دویچ (به نام خود دانشمند) به تصویر کشیده شده است. با استفاده از این مدار کوانتومی، تنها با یکبار محاسبه میتوان تشخیص داد که تابع چه حالتی دارد.
بنابراین، ما اکنون الگوریتمی در اختیار داریم که در یک کامپیوتر کوانتومی قابل اجرا است و هیچ کامپیوتر کلاسیکی نمیتواند سریع تر از این الگوریتم، نتیجه را محاسبه کند.

کانال تکامل فیزیکی
@physical_evolution
#تعاریف_ریاضیات #ریاضی #ریاضی_فیزیک

🟡 پدید آمدن یک زیر فضا از یک مجموعه ای از حالت ها:
در این قضیه بسیار مهم، مفهوم پدید آمدن (Span) یک زیرفضا از مجموعه ای از حالت ها مطالعه میشود.

کانال تکامل فیزیکی
@physical_evolution
👍1
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 الگوریتم دویچ-جوزا:
فرض کنید که یک تابع n بیت-ورودی و تک بیت-خروجی به شما داده اند که دو حالت دارد، یا یک تابع «ثابت» است یا یک تابع «متعادل». تابع ثابت، تابعی است که به ازای همه ی مقادیر ورودی مقادرش ثابت باشد و تابع متعادل تابعی است که به ازای دقیقاً نیمی از ورودی ها خروجی 0 و به ازای نیم دیگر خروجی 1 بدهد. حال از شما میپرسند که این تابعی که به شما داده شده، در کدام حالت است؟
در حالت کلاسیکی، در بدترین حالت، باید n/2 بار تابع را اجرا کنیم تا بفهمیم که کدام حالت است. آیا این مسئله هم یک الگوریتم کوانتومی دارد؟ آنچه در تصویر آمده، مثبت بودن پاسخ این سوال را نشان میدهد. الگوریتم دویچ-جوزا، بیان میدارد که تنها با یکبار اجرا کردن این مدار، میتوان فهمید که تابع داده شده، در کدام حالت است. سریع تر از هر کامپیوتر کلاسیکی.


کانال تکامل فیزیکی
@physical_evolution
👍1
#تعاریف_ریاضیات #ریاضی #ریاضی_فیزیک

🟡 تعریف پایه:
یکی از مهمترین تعاریف در جبر خطی و فضاهای برداری، تعریف پایه است. هنگامی که با تعریف پایه آشنا میشویم، امکانات زیادی پیش روی ما خواهد بود. از این پس قادر خواهیم بود تا بردارهای فضا را به طور مناسب نمایش دهیم. نمایشی برای عملگرهای فضاهای برداری بیابیم. بتوانیم بهتر فضاهای برداری را مطالعه و واکاوی کنیم و بسیاری امکانات دیگر.

کانال تکامل فیزیکی
@physical_evolution
#خبر_علمی #نیروی_هسته_ای #انقلاب_علمی

🟡 ممکن است نظریه‌ی توصیف کننده‌ی نیروی هسته‌ای قوی، اشتباه باشد!

نتایج برخی از آزمایش‌های اخیر، اخلافاتی را با نظریه‌ی فعلی ما درباره‌ی نیروی هسته‌ای قوی، نشان می‌دهد. دقیقا نمی‌دانیم که اصلاحات در محاسبات نظری و وارد کردن جملات حذف شده (به خاطر تقریب) مشکل را حل می‌کند، یا چیزی عمیق‌تر در نیروی هسته‌ای قوی وجود دارد که ما فعلا از آن درکی نداریم.

لینک خبر:
https://www.quantamagazine.org/a-new-experiment-casts-doubt-on-the-leading-theory-of-the-nucleus-20230612/

کانال تکامل فیزیکی
@physical_evolution
👍1
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 انواع الگوریتم های کوانتومی:
الگوریتم‌های کوانتومی‌ای که تا امروز ساخته شده‌اند به سه دسته‌ی کلی تقسیم می‌شوند:

۱- الگوریتم‌های بر مبنای تبدیل فوریه
۲- الگوریتم‌های جستجو
۳- شبیه‌سازی کوانتومی

در ادامه، سعی می‌شود معرفی مختصری بر هر دسته ارا‌ئه شود.


کانال تکامل فیزیکی
@physical_evolution
#تعاریف_ریاضیات #ریاضی #ریاضی_فیزیک

🟡 قضیه:
در این قضیه، که قضیه ای بنیادی و اساسی در جبر خطی است، اثبات میشود که همه‌ی پایه‌های یک فضای برداری محدود بعدی، تعداد برابری عضو دارند. اثبات این قضیه مفصل است و علاقه‌مندان می‌توانند برای مطالعه‌ی اثبات این قضیه به کتاب‌های جبر خطی مراجعه کنند.
این قضیه راه را برای تعریف کردن مفهوم بُعد، باز می‌کند.

کانال تکامل فیزیکی
@physical_evolution
👍1
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 ۱. الگوریتم‌های کوانتومی بر مبنای تبدیل فوریه:

مشابه کوانتومی تبدیل فوریه‌ی گسسته، همین مداری است که در تصویر آمده است. مسئله‌ی مهمی که مطرح است این است که محاسبه‌ی این تبدیل فوریه بر روی یک کامپیوتر کوانتومی، تصاعدی سریع‌تر از کامپیوتر‌های کلاسیک است. بنابراین، طبیعی است که الگوریتم‌هایی که بر مبنای این تبدیل باشند، به صورت تصاعدی از الگوریتم‌ کلاسیکی‌شان سریع‌تر هستند.

خبر خوب این است که دسته‌ی وسیعی از الگوریتم‌های کوانتومی، از همین جنس هستند. به عنوان مثال‌هایی از الگوریتم‌های معروف می‌توان به الگوریتم، دویچ-جوزا یا الگوریتم شور برای تجزیه‌ی اعداد اشاره کرد. همچنین الگوریتم کوانتومی‌ای که برای حل مسئله‌ی معروف زیرگروه پنهان، که هیچ حل کارآمد کلاسیکی‌ای ندارد، پیشنهاد شده است، از جنس تبدیل فوریه‌ی کوانتومی است.

⚛️ کانال تکامل فیزیکی
@physical_evolution
#تعاریف_ریاضیات #ریاضی #ریاضی_فیزیک

🟡 تعریف بُعد یک فضای برداری:
یکی از مهم‌ترین تعاریف جبر خطی، تعریف بُعد یک فضای برداری است. قضیه‌ای که قبلاً اثبات کرده بودیم، مبنی بر اینکه همه‌ی پایه‌های فضا به تعداد برابری عضو دارند، باعث می‌شود که این تعریف، خوش‌تعریف باشد.

⚛️ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 ۲. الگوریتم‌های جستجوی کوانتومی:

طیف وسیعی از مسائل هستند که الگوریتم حل‌شان، از جنس جستجو کردن در یک مجموعه است. فرض کنید مجموعه‌ای از N عضو دارید و مطلوب شما این است که عضوی از این مجموعه را، که ویژگی خاصی دارد، پیدا کنید.
بهترین الگوریتم‌های کلاسیکی، تقریباً باید از مرتبه‌ی N بار عمل انجام دهند تا بتوانند آن عضو را بیابند.

اما، گروور، توانست با ارائه‌ی الگوریتم کوانتومی‌ای، مسئله‌ی جستجو در یک فضای N عضوی را، با انجام دادن تعداد عمل‌هایی از مرتبه‌ی N^0.5، حل کند. بنابراین، همه‌ی مسائلی که برای پایه‌ی جستجو باشند، بر پایه‌ی الگوریتم گروور، در یک کامپیوتر کوانتومی کارآمدتر حل می‌شوند.

البته باید توجه کرد که بر خلاف الگوریتم‌های بر پایه‌ی تبدیل فوریه، به صورت تصاعدی سرعت را افزایش می‌داد، الگوریتم‌های جستجو سرعت را از مرتبه‌ی ۲ افزایش می‌دهد، که به نسبت افزایش تصاعدی، افزایش کندتری محسوب می‌شود.

⚛️ کانال تکامل فیزیکی
@physical_evolution
#تعاریف_ریاضیات #ریاضی #ریاضی_فیزیک

🟡 تعریف مولفه‌های یک بردار:
ما همواره عادت داریم که یک بردار در فضای دو بُعدی یا سه‌ بُعدی را با استفاده از مؤلفه‌هایش توصیف کنیم. در این تصویر، یک تعریف انتزاعی و کلی از مؤلفه‌های یک بردار ارائه شده است، که می‌تواند برای هر فضای برداری محدود بُعدی‌ای صادق باشد.

⚛️ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 ۳. شبیه‌سازی کوانتومی:

شاید یکی از دلایل اصلی توجه به کامپیوترهای کوانتومی، مسئله‌ی شبیه‌سازی یک سیستم کوانتومی است. این شبیه‌سازی روی کامپیوترهای کلاسیک بسیار دشوار است. علت دشوار بودن این شبیه‌سازی این است که تعداد پارامترهای یک سیستم کوانتومی مشتکل n ذره، برابر با c^n است و بنابراین به صورت نمایی با تعداد ذرات افزایش می‌یابد.

به همین دلیل، چون شبیه‌سازی یک سیستم کوانتومی بر روی یک کامپیوتر کوانتومی به صورت کارآمد ممکن است، ساختن یک کامپیوتر کوانتومی از اهمیت بسیار زیادی برخوردار است.

در زمینه‌های زیادی ما نیاز به شبیه‌سازی یک سیستم کوانتومی داریم. به عنوان نمونه، شبیه‌سازی یک سیستم ماده چگال، و یا شبیه‌سازی دینامیک مولکول‌ها، همه از مثال‌هایی هستند که هم‌اکنون بر روی کامپیوترهای کلاسیک غیرقابل دسترس‌اند.

⚛️ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 قدرت محاسبات کوانتومی (قسمت ۱):

یکی از مسائل اصلی حوزه‌ی محاسبات، دسته‌بندی مسائل قابل محاسبه در کامپیوترها است. یک دسته‌بندی (کلاس‌بندی) معروف، چیزی است که در تصویر آمده است.

کلاس P معمولاً به دسته مسائلی گفته می‌شوند که به سرعت در یک کامپیوتر کلاسیک حل می‌شوند. به عنوان مثال، محاسبه جذر یک عدد.

کلاس NP مربوط به مسائلی هستند که چک کردن درستی حل‌شان، در یک کامپیوتر کلاسیک، به سرعت قابل انجام است. واضح است که همه‌ی مسائل کلاس P در کلاس NP نیز قرار دارند. اما مسائلی وجود دارند که NP هستند ولی P نیستند و این مسائل به نوعی، محدودیت اصلی کامپیوترهای کلاسیک هستند. یکی از معروف‌ترین این مسائل، تجزیه یک عدد به عوامل اول آن است.

از طرف دیگر، دسته‌ی وسیع‌تری از مسائل هستند که به PSPACE معروف هستند. این مسائل، فضای کمی از حافظه را نیاز دارند، اما لزوماً از نظر زمانی، بهینه نیستند.

این دسته‌بندی از مسائل، ما را قادر می‌سازد که بتوانیم قدرت اصلی کامپیوترهای کوانتومی را بهتر درک کنیم.

⚛️ کانال تکامل فیزیکی
@physical_evolution
#تعاریف_ریاضیات #ریاضی #ریاضی_فیزیک

🟡 نمادگذاری جمع زیرفضاهای برداری:
در این تصویر، نماد جمع برای زیرفضاهای برداری تعریف شده است. مجموعه‌ی همه‌ی بردارهایی که به صورت جمع بردارهای دو زیرفضای خاص می‌توانند نوشته شوند، با چنین جمعی نشان داده می‌شود.

⚛️ کانال تکامل فیزیکی
@physical_evolution
#محاسبات_اطلاعات_کوانتومی #کوانتوم #کیوبیت #مدار_کوانتومی #محاسبات_کوانتومی

🟡 قدرت محاسبات کوانتومی (قسمت ۲):

مشخص شده است که مسائل NP که P نیستند وجود دارند که در یک کامپیوتر کوانتومی به سرعت قابل حل هستند. به عنوان نمونه، الگوریتم شور برای تجزیه‌ی یک عدد به عوامل اولش. وجود چنین مسائلی، ایده‌ای به ذهن می‌رساند که شاید یک کلاس‌بندی مجزا برای محاسبات کوانتومی نیاز است.

این حوزه، بسیار جدید و نو است و بنابراین، کلاس‌های محاسباتی خیلی زیادی تا کنون تعریف نشده است. یکی از معروف‌ترین کلاس‌ها، BQP است که مربوط به مسائلی است که به صورت کارآمد در یک کامپیوتر کوانتومی قابل حل می‌باشد. مقایسه‌ی این کلاس به نسبت کلاس‌های محاسباتی کامپیوترهای کلاسیک، می‌تواند بسیار مهم و مفید باشد. چنین مقایسه‌ای در تصویر آمده است.

تنها چیزی که مطمئن هستیم این است که هیچ مسئله‌ی خارج از PSPACE وجود ندارد که در یک کامپیوتر کوانتومی به صورت کارآمد قابل حل باشد. همچنین، تنها این را می‌دانیم که دسته‌ای از NP ها و PSPACEها هستند که در یک کامپیوتر کوانتومی به صورت کارآمد قابل حل‌اند.

⚛️ کانال تکامل فیزیکی
@physical_evolution
#تعاریف_ریاضیات #ریاضی #ریاضی_فیزیک

🟡 تعریف جمع مستقیم دو زیرفضای برداری:
اگر دو زیرفضا داشته باشیم که اشتراکشان تنها بردار صفر باشند، آنگاه مجموعه‌ی بردارهایی که می‌توانند به صورت جمع دو بردار از هرکدام از این زیرفضاها نوشته شوند، «جمع‌ مستقیم» این دو زیرفضا گفته می‌شود.

جمع مستقیم اهمیت زیادی در ریاضی فیزیک دارد. قضایای مفیدی برای جمع مستقیم دو زیرفضا برقرار است، که در ادامه خواهد آمد.

⚛️ کانال تکامل فیزیکی
@physical_evolution
👍1
◼️سالروز شهادت پیشوای آزادگان جهان, حضرت سیدالشهدا, امام حسین (ع)و هفتاد و دو پروانه ی با وفایش را به پیشگاه همه آنان که این روزها به عشق امام حسین(ع) و حماسه کربلایی اش سوگوارند, تسلیت و تعزیت عرض می نماییم .
14👎3👍1
🔘 اطلاعیه‌ی شماره‌ی ۴

کمیته‌ی علمی درحال بررسی مقالات دریافتی است و نتایج در اولین فرصت اعلام می‌شود.

@QIC_National_Conference
کنفرانس ملی محاسبات و اطلاعات کوانتومی
@QIC_National_Conference
🔘 چهارمین کنفرانس ملی محاسبات و اطلاعات کوانتومی ایران در دانشکده فیزیک دانشگاه صنعتی شریف با همکاری انجمن فیزیک ایران برگزار می‌شود.

مهلت ارسال مقالات: ۳۰ تیرماه ۱۴۰۲

🗓 زمان و مکان برگزاری: ۱۹ و ۲۰ مهرماه ۱۴۰۲، دانشکده‌ی فیزیک دانشگاه صنعتی شریف

👤 سخنرانان مدعو:
محمدکاظم توسلی، دانشگاه یزد
محمد رضایی، دانشگاه صنعتی شریف
محمدحسین زارعی، دانشگاه شیراز
شهریار سلیمی، دانشگاه کردستان
فاطمه طریقی تابش، پژوهشگاه دانش‌های بنیادی
سحر علیپور، دانشگاه آلتو
مصطفی عنابستانی، دانشگاه صنعتی شاهرود
حمیدرضا محمدی، دانشگاه اصفهان
علی حامد موسویان، مرکز تحقیقاتی فن‌آوری‌های کوانتومی ایران


🔗 برای اطلاعات بیشتر به سایت انجمن فیزیک و کانال تلگرام کنفرانس مراجعه کنید.

@QIC_National_Conference