Параметр start=1 задаёт, с какого номера начинать (по умолчанию с 0). Это удобно, если нужен "человеческий" ID
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥1💊1
Рекурсия — это мощный инструмент, но в Python она имеет ограничения, которые нужно учитывать при написании кода.
В Python по умолчанию рекурсия ограничена 1000 вызовами, чтобы избежать переполнения стека.
import sys
print(sys.getrecursionlimit()) # 1000 (обычное значение)
Если превысить этот лимит, программа вызовет ошибку
def recursive():
return recursive()
recursive() # RecursionError: maximum recursion depth exceeded
Можно увеличить глубину рекурсии, но это небезопасно
sys.setrecursionlimit(2000) # Увеличиваем до 2000
Каждый рекурсивный вызов создаёт новый фрейм в стеке вызовов.
def factorial(n):
if n == 1:
return 1
return n * factorial(n - 1)
print(factorial(10000)) # Ошибка из-за переполнения стека
Другие языки (например, Lisp, JavaScript) автоматически оптимизируют хвостовую рекурсию (Tail Call Optimization, TCO).
Python не делает этого, поэтому даже "идеальная" рекурсия всё равно переполняет стек.
def tail_recursive(n, acc=1):
if n == 1:
return acc
return tail_recursive(n - 1, n * acc)
print(tail_recursive(1000)) # Всё равно вызовет RecursionError
Рекурсивный вызов требует больше накладных расходов (создание стек-фреймов), чем обычный
for или while.# Итеративный вариант (быстрее)
def factorial_iter(n):
result = 1
for i in range(1, n + 1):
result *= i
return result
# Рекурсивный вариант (медленнее)
def factorial_rec(n):
if n == 1:
return 1
return n * factorial_rec(n - 1)
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
1. В многослойной архитектуре это уровень service или domain.
2. Хранение логики в контроллерах или представлениях считается плохой практикой.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍4🔥2
Параллелизм — это способ выполнения программ, при котором несколько задач выполняются одновременно (реально параллельно). Он используется для ускорения работы программ, особенно на многоядерных процессорах.
Пример без параллелизма (последовательное выполнение)
Допустим, у нас есть две задачи:
1. Скачать файл (3 секунды).
2. Обработать данные (2 секунды).
Если выполнять их последовательно
[1] Скачать файл... (3 сек)
[2] Обработать файл... (2 сек)
[Готово за 5 секунд]
Пример с параллелизмом (оба процесса выполняются одновременно)
Если у нас 2 ядра процессора, можно выполнить задачи одновременно.
[1] Скачать файл... (3 сек) ──► Готово!
[2] Обработать файл... (2 сек) ──► Готово!
[Готово за 3 секунды] ✅ Быстрее!
В Python
multiprocessing создаёт отдельные процессы, которые работают на разных ядрах.import multiprocessing
import time
def task(name):
print(f"Начал {name}")
time.sleep(2)
print(f"Закончил {name}")
if __name__ == "__main__":
p1 = multiprocessing.Process(target=task, args=("Процесс 1",))
p2 = multiprocessing.Process(target=task, args=("Процесс 2",))
p1.start()
p2.start()
p1.join()
p2.join()
print("Все процессы завершены")
Python не может выполнять потоки параллельно из-за GIL, но
threading всё же полезен для задач ввода-вывода.import threading
import time
def task(name):
print(f"Начал {name}")
time.sleep(2)
print(f"Закончил {name}")
t1 = threading.Thread(target=task, args=("Поток 1",))
t2 = threading.Thread(target=task, args=("Поток 2",))
t1.start()
t2.start()
t1.join()
t2.join()
print("Все потоки завершены")
Асинхронность позволяет не ждать выполнения операции, а переключаться на другие задачи.
import asyncio
async def task(name):
print(f"Начал {name}")
await asyncio.sleep(2) # НЕ блокирует другие задачи
print(f"Закончил {name}")
async def main():
await asyncio.gather(task("Задача 1"), task("Задача 2"))
asyncio.run(main())
Процессор выполняет несколько инструкций одновременно. Например, в современных процессорах есть конвейер (pipeline), который выполняет несколько операций параллельно.
Одна операция применяется к разным данным одновременно (используется в нейросетях, GPU).
import numpy as np
arr = np.array([1, 2, 3, 4])
result = arr * 2 # Все элементы умножаются одновременно (векторизация)
print(result) # [2 4 6 8]
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2💊2
Алгоритм Фейнмана — это метод обучения, который заключается в следующем:
1. Изучи концепт так, чтобы мог объяснить его простыми словами.
2. Найди, что непонятно, и углубись в эти части.
3. Перепиши и уточни объяснение, используя аналогии. Это способ глубокого понимания за счёт упрощения и переобъяснения.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
💊8🔥5
Команда
git commit используется для фиксации изменений в локальном репозитории Git. Она сохраняет текущие изменения в коде (добавленные, изменённые или удалённые файлы), которые были подготовлены с помощью команды git add. По сути, git commit создаёт "снимок" текущего состояния проекта, который можно использовать для отслеживания истории изменений, их анализа или отката к более ранним версиям.Когда вы работаете с Git, ваши изменения сначала попадают в рабочую директорию. После этого, чтобы зафиксировать их, вы добавляете их в индекс (staging area) с помощью команды
git add. Только те изменения, которые находятся в индексе, будут включены в следующий коммит. Команда git commit фиксирует все изменения из staging area и сохраняет их как новую версию в истории проекта.Каждый коммит сохраняет подробную информацию о том, что было изменено, когда и почему. Это позволяет отслеживать развитие проекта.
Можно вернуться к любой точке в истории и восстановить состояние проекта.
В командной разработке коммиты позволяют другим разработчикам видеть изменения и их причины.
Коммиты разбивают изменения на логические единицы, что упрощает их понимание.
# Шаг 1. Внести изменения в файл
echo "Hello, Git!" > example.txt
# Шаг 2. Добавить изменения в staging area
git add example.txt
# Шаг 3. Зафиксировать изменения
git commit -m "Добавил файл example.txt с приветственным текстом"
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍7
Список (list)— это изменяемая упорядоченная коллекция объектов любого типа.
Особенности устройства:
- Реализован как динамический массив, который автоматически расширяется при добавлении элементов.
- Элементы хранятся по ссылкам, что позволяет хранить смешанные типы.
- Обеспечивает быстрый доступ по индексу (O(1)), но вставка и удаление из середины — медленные (O(n)).
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥2👍1
Использование чисел в качестве ключей в словарях Python – это достаточно распространённый случай. Однако у этого подхода есть несколько нюансов, которые нужно учитывать для избежания ошибок.
Ключи в словаре должны быть хешируемыми, поскольку словари в Python основаны на хеш-таблицах. Хешируемость означает, что объект имеет неизменное значение хеша в течение его жизни. Числа (как
int, так и float) являются хешируемыми, поэтому их можно использовать в качестве ключей.d = {1: "один", 2: "два"}
print(d[1]) # "один"Python не делает различий между
int и float, если их значения равны. Это связано с тем, что у них одинаковое хеш-значение при равенстве. d = {1: "один", 1.0: "float один", 2: "два"}
print(d) # {1: 'float один', 2: 'два'}Числа с плавающей запятой (
float) иногда ведут себя непредсказуемо из-за ошибок округления, которые возникают из-за особенностей представления чисел в памяти компьютера.d = {0.1 + 0.2: "значение"} # 0.1 + 0.2 не равно точно 0.3 из-за округления
print(d.get(0.3)) # None, ключ не найден!Использование чисел как ключей в словарях эффективно с точки зрения производительности. Поскольку числа хешируются быстро и занимают меньше памяти, операции добавления, удаления и поиска выполняются очень быстро.
Если ключами словаря являются числа, то при обработке данных (например, чтении из файла или API) можно случайно преобразовать их в строки, что приведёт к созданию новых ключей вместо использования существующих.
d = {1: "один", 2: "два"}
print(d.get("1")) # None, строка "1" и число 1 – это разные ключи!Если вы используете пользовательские объекты как ключи и они ведут себя как числа (например, реализуют методы
__hash__ и __eq__), то их поведение должно быть совместимо с ожидаемым использованием. class MyNumber:
def __init__(self, value):
self.value = value
def __hash__(self):
return hash(self.value)
def __eq__(self, other):
return self.value == other.value
d = {MyNumber(1): "один"}
print(d[MyNumber(1)]) # "один"
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
from foo import bar импортирует только конкретный элемент, тогда как from foo import * импортирует всё содержимое модуля. Последний вариант не рекомендуется, так как он загрязняет пространство имён и делает код менее понятным.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5💊1
В Python множество (
set) — это неупорядоченная коллекция уникальных элементов, которая работает на основе хеш-таблицы. Это значит, что только хешируемые (immutable) объекты могут быть добавлены в set.Числа (
int, float, complex) s = {1, 2.5, 3+4j}Строки (
str) s = {"apple", "banana", "cherry"}Кортежи (
tuple), если они тоже содержат только неизменяемые объекты s = {(1, 2), ("a", "b")}Булевые значения (
bool)** (но True считается 1, а False — 0) s = {True, False, 1, 0}
print(s) # {False, True} (0 и 1 не добавятся повторно)Изменяемые объекты (
list, set, dict) s = { [1, 2, 3] } # Ошибка: TypeError: unhashable type: 'list' s = { {"key": "value"} } # Ошибка: TypeError: unhashable type: 'dict'Кортежи с изменяемыми элементами
s = { (1, [2, 3]) } # Ошибка: TypeErrorСтавь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍1
Итератор обязан реализовать два метода:
- iter — возвращает сам итератор;
- next — возвращает следующий элемент или выбрасывает исключение StopIteration при завершении.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3🔥1💊1
Для реализации протокола итерирования данных в Python необходимо использовать два метода:
__iter__() и __next__().Этот метод должен возвращать объект-итератор. В простом случае он возвращает сам объект, если объект реализует метод
__next__(). Метод __iter__() необходим для того, чтобы объект можно было использовать в конструкциях, которые требуют итерируемого объекта, таких как циклы for. __next__()Этот метод возвращает следующий элемент в последовательности. Когда элементы заканчиваются, метод должен вызвать исключение
StopIteration для остановки итерации.class MyRange:
def __init__(self, start, end):
self.start = start
self.end = end
self.current = start
def __iter__(self):
self.current = self.start # Перезапуск итератора при каждом вызове
return self
def __next__(self):
if self.current >= self.end:
raise StopIteration
else:
self.current += 1
return self.current - 1
# Использование
for number in MyRange(1, 5):
print(number)
Для упрощения создания итераторов в Python можно использовать генераторы. Генераторы позволяют писать итераторы с использованием ключевого слова
yield вместо определения методов __iter__() и __next__() вручную.def my_range(start, end):
current = start
while current < end:
yield current
current += 1
# Использование
for number in my_range(1, 5):
print(number)
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍2
Да, это встроенная (built-in) область видимости. Она содержит определения, доступные в любом месте Python: встроенные функции (len, type, range, print) и константы (True, None, Ellipsis и т.д.). Эта область всегда доступна, но идёт последней в цепочке поиска.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5🔥1
В Python счетчик ссылок (reference count) используется для управления памятью. Он показывает, сколько раз объект используется в программе. Когда счетчик ссылок падает до нуля, Python автоматически удаляет объект, освобождая память.
Python использует автоматическое управление памятью, основанное на подсчёте ссылок. Когда создаётся объект, Python хранит специальное число — количество ссылок на этот объект. Это число увеличивается, когда мы создаём новую ссылку на объект, и уменьшается, когда удаляем или перезаписываем переменную.
import sys
a = [1, 2, 3] # Создаём список
print(sys.getrefcount(a)) # Выведет 2 (одна ссылка 'a' + вызов getrefcount)
b = a # Новая ссылка на тот же объект
print(sys.getrefcount(a)) # Теперь 3 (a, b и сам getrefcount)
del a # Удаляем одну ссылку
print(sys.getrefcount(b)) # Теперь 2
del b # Удаляем последнюю ссылку, объект будет удалён из памяти
Python сам удаляет ненужные объекты, не давая памяти переполняться.
Если объект имеет циклические ссылки (например, список ссылается сам на себя), Python не может освободить его сразу, поэтому дополнительно используется сборщик мусора (Garbage Collector, GC).
import gc
class Node:
def __init__(self):
self.ref = self # Циклическая ссылка!
n = Node()
del n # Обычный подсчёт ссылок не сработает, объект останется в памяти
gc.collect() # Явный вызов сборщика мусора удалит его
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍6
EXPLAIN — команда в SQL (особенно PostgreSQL), которая показывает план выполнения запроса:
- какие индексы используются;
- как идут соединения;
- примерная стоимость.
Это помогает оптимизировать производительность сложных запросов.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9
В Python исключения (
exceptions) — это специальные объекты, которые возникают при ошибках и прерывают выполнение программы, если их не обработать.Все исключения в Python — это объекты, унаследованные от
BaseException. try:
1 / 0
except ZeroDivisionError as e:
print(type(e)) # <class 'ZeroDivisionError'>
print(e) # division by zero
Все исключения унаследованы от
BaseException: BaseException
├── Exception
│ ├── ArithmeticError
│ │ ├── ZeroDivisionError
│ │ ├── OverflowError
│ ├── ValueError
│ ├── IndexError
│ ├── KeyError
│ ├── TypeError
├── SystemExit
├── KeyboardInterrupt
Можно перехватывать несколько исключений
try:
x = int("abc") # Ошибка ValueError
except (ValueError, TypeError) as e:
print(f"Ошибка: {e}")
Если не знаем, какая ошибка может произойти:
try:
x = 1 / 0
except Exception as e:
print(f"Ошибка: {e}") # division by zero
finally выполняется всегда try:
1 / 0
except ZeroDivisionError:
print("Ошибка!")
finally:
print("Этот код выполнится всегда")
raise позволяет выбрасывать исключения вручную raise ValueError("Ошибка: неверное значение!")Можно создать свой класс ошибки, унаследованный от
Exception: class MyError(Exception):
pass
raise MyError("Это моя ошибка!")
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍8
Функции упрощают поддержку кода, делают его переиспользуемым и модульным. Они способствуют разбиению программы на логические части, что облегчает отладку и тестирование. Также они позволяют сократить объём кода и сделать его более понятным.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5💊2
Паттерн "Мост" (Bridge) является структурным паттерном проектирования, который предназначен для разделения абстракции и реализации так, чтобы они могли изменяться независимо друг от друга. Этот паттерн полезен, когда класс должен работать с различными платформами или когда нужно избежать жесткой связки между абстракцией и ее реализацией.
Он позволяет отделить абстракцию от ее реализации, что упрощает поддержку и расширение системы.
Без применения этого паттерна, если у нас есть несколько вариантов абстракции и несколько вариантов реализации, то нам пришлось бы создавать классы для всех возможных комбинаций, что приводит к взрывному росту количества классов.
Это позволяет изменять и абстракцию, и реализацию независимо друг от друга.
Определяет интерфейс и хранит ссылку на объект Implementor.
Наследует Abstraction и расширяет интерфейс.
Определяет интерфейс для всех реализаций.
Реализует интерфейс Implementor.
Допустим, у нас есть программа для управления различными типами устройств (например, телевизор и радио), которые можно включать и выключать. Мы хотим, чтобы способ управления устройствами мог изменяться независимо от типов устройств.
# Implementor
class Device:
def is_enabled(self):
pass
def enable(self):
pass
def disable(self):
pass
# ConcreteImplementor
class TV(Device):
def __init__(self):
self._on = False
def is_enabled(self):
return self._on
def enable(self):
self._on = True
def disable(self):
self._on = False
class Radio(Device):
def __init__(self):
self._on = False
def is_enabled(self):
return self._on
def enable(self):
self._on = True
def disable(self):
self._on = False
# Abstraction
class RemoteControl:
def __init__(self, device):
self._device = device
def toggle_power(self):
if self._device.is_enabled():
self._device.disable()
else:
self._device.enable()
# RefinedAbstraction
class AdvancedRemoteControl(RemoteControl):
def mute(self):
print("Device is muted.")
# Клиентский код
tv = TV()
remote = RemoteControl(tv)
remote.toggle_power() # Включает TV
radio = Radio()
advanced_remote = AdvancedRemoteControl(radio)
advanced_remote.toggle_power() # Включает Radio
advanced_remote.mute() # Заглушает Radio
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5
Global позволяет объявить, что переменная в функции ссылается на глобальную переменную, а не создаёт локальную. Nonlocal указывает, что переменная находится в охватывающем, но не глобальном контексте — это полезно во вложенных функциях и замыканиях.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
🔥5👍1
Разбить список (
list) можно разными способами в зависимости от задачи: На части фиксированной длины
На N частей
По условию
Если нужно разделить список на подсписки длиной
n, можно использовать list comprehensiondef split_list(lst, size):
return [lst[i:i + size] for i in range(0, len(lst), size)]
data = [1, 2, 3, 4, 5, 6, 7, 8, 9]
print(split_list(data, 3))
Вывод
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
Если нужно разделить список на
N частей, можно использовать numpy или itertools import numpy as np
def split_into_n_parts(lst, n):
return np.array_split(lst, n)
data = [1, 2, 3, 4, 5, 6, 7, 8, 9]
print(split_into_n_parts(data, 4))
Вывод
[array([1, 2, 3]), array([4, 5]), array([6, 7]), array([8, 9])]
Если нужно разделить список по какому-то критерию, например, на чётные и нечётные числа
data = [1, 2, 3, 4, 5, 6, 7, 8, 9]
even = [x for x in data if x % 2 == 0]
odd = [x for x in data if x % 2 != 0]
print(even, odd)
Вывод
[2, 4, 6, 8] [1, 3, 5, 7, 9]
Ставь 👍 и забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍3
- all() — получить все записи;
- filter() — отфильтровать по условиям;
- exclude() — исключить по условиям;
- get() — получить одну запись (если больше — исключение);
- create() — создать запись;
- update() — обновить записи;
- delete() — удалить;
- exists() — проверить наличие;
- count() — подсчитать количество;
- order_by() — сортировка;
- values() / values_list() — извлечение словарей/списков.
Ставь 👍 если знал ответ, 🔥 если нет
Забирай 📚 Базу знаний
Please open Telegram to view this post
VIEW IN TELEGRAM
👍5