Эффективное использование метода __iand__(self, other)
Метод iand(self, other) в Python позволяет определить поведение оператора побитовой операции "и" с присваиванием (&=) для пользовательских классов. Этот метод полезен для выполнения битовых операций над данными, которые хранятся в пользовательских объектах.
Метод iand является специальным методом, который позволяет реализовать операцию побитового "и" с присваиванием. Когда оператор &= применяется к объекту, Python вызывает этот метод, позволяя изменить объект на месте в соответствии с результатом операции.
Использование метода iand позволяет легко реализовать операцию побитового "и" с присваиванием для пользовательских классов. Это делает код более чистым и удобным для чтения, а также улучшает производительность за счет изменения объектов на месте.
Разъяснивший Python | ChatGPT
Метод iand(self, other) в Python позволяет определить поведение оператора побитовой операции "и" с присваиванием (&=) для пользовательских классов. Этот метод полезен для выполнения битовых операций над данными, которые хранятся в пользовательских объектах.
Метод iand является специальным методом, который позволяет реализовать операцию побитового "и" с присваиванием. Когда оператор &= применяется к объекту, Python вызывает этот метод, позволяя изменить объект на месте в соответствии с результатом операции.
Использование метода iand позволяет легко реализовать операцию побитового "и" с присваиванием для пользовательских классов. Это делает код более чистым и удобным для чтения, а также улучшает производительность за счет изменения объектов на месте.
Разъяснивший Python | ChatGPT
Unstructured для предварительной обработки текста
Unstructured - это доступная библиотека Python для легкого извлечения текста из документов. Она упрощает очистку текста, обрабатывая все, от удаления маркеров до управления эмодзи и языкового перевода.
Ссылочка на доку
Разъяснивший Python | ChatGPT
Unstructured - это доступная библиотека Python для легкого извлечения текста из документов. Она упрощает очистку текста, обрабатывая все, от удаления маркеров до управления эмодзи и языкового перевода.
Ссылочка на доку
Разъяснивший Python | ChatGPT
Ограничение использования процессора и памяти (ч.2)
Затем мы устанавливаем лимит, используя некое число секунд, задаваемое аргументом seconds, и ранее полученное значение жёсткого лимита. После этого мы регистрируем обработчик signal, который, при превышении выделенного программе процессорного времени, инициирует процедуру выхода. В случае с памятью, мы, опять же, получаем значения для нежёсткого и жёсткого лимитов, после чего устанавливаем ограничение с помощью метода setrlimit, которому передаём размер ограничения (size) и ранее полученное значение жёсткого лимита
Разъяснивший Python | ChatGPT
Затем мы устанавливаем лимит, используя некое число секунд, задаваемое аргументом seconds, и ранее полученное значение жёсткого лимита. После этого мы регистрируем обработчик signal, который, при превышении выделенного программе процессорного времени, инициирует процедуру выхода. В случае с памятью, мы, опять же, получаем значения для нежёсткого и жёсткого лимитов, после чего устанавливаем ограничение с помощью метода setrlimit, которому передаём размер ограничения (size) и ранее полученное значение жёсткого лимита
Разъяснивший Python | ChatGPT
del
del – это оператор, который используется для удаления объектов. Он может применяться к элементам списка, срезам списка, переменным, атрибутам и элементам словаря. В контексте списков, del используется для удаления элементов или срезов из списка по индексу или диапазону индексов.
Разъяснивший Python | ChatGPT
del – это оператор, который используется для удаления объектов. Он может применяться к элементам списка, срезам списка, переменным, атрибутам и элементам словаря. В контексте списков, del используется для удаления элементов или срезов из списка по индексу или диапазону индексов.
Разъяснивший Python | ChatGPT
list.clear
Метод clear используется для удаления всех элементов из списка, оставляя его пустым. Этот метод очень удобен, когда нужно очистить список, не создавая новый объект.
Разъяснивший Python | ChatGPT
Метод clear используется для удаления всех элементов из списка, оставляя его пустым. Этот метод очень удобен, когда нужно очистить список, не создавая новый объект.
Разъяснивший Python | ChatGPT
sorted
Функция sorted() возвращает отсортированный список элементов из указанного итерируемого объекта. Она не изменяет исходный объект, а возвращает новый отсортированный список. По умолчанию сортировка происходит по возрастанию, но с помощью параметра reverse=True можно изменить направление на убывание.
Разъяснивший Python | ChatGPT
Функция sorted() возвращает отсортированный список элементов из указанного итерируемого объекта. Она не изменяет исходный объект, а возвращает новый отсортированный список. По умолчанию сортировка происходит по возрастанию, но с помощью параметра reverse=True можно изменить направление на убывание.
Разъяснивший Python | ChatGPT
Эффективное использование метода __imatmul__(self, other)
Метод imatmul(self, other) в Python позволяет определить поведение оператора матричного умножения с присваиванием (@=) для пользовательских классов. Это полезно для работы с матрицами и другими структурами данных, поддерживающими матричное умножение, делая код более выразительным и эффективным.
Метод imatmul — это специальный метод, который позволяет реализовать матричное умножение с присваиванием. Когда оператор @= применяется к объекту, Python вызывает этот метод, позволяя изменить объект на месте в соответствии с результатом матричного умножения.
Использование метода imatmul позволяет легко реализовать матричное умножение с присваиванием для пользовательских классов. Это делает код более чистым и удобным для чтения, а также улучшает производительность за счет изменения объектов на месте.
Разъяснивший Python | ChatGPT
Метод imatmul(self, other) в Python позволяет определить поведение оператора матричного умножения с присваиванием (@=) для пользовательских классов. Это полезно для работы с матрицами и другими структурами данных, поддерживающими матричное умножение, делая код более выразительным и эффективным.
Метод imatmul — это специальный метод, который позволяет реализовать матричное умножение с присваиванием. Когда оператор @= применяется к объекту, Python вызывает этот метод, позволяя изменить объект на месте в соответствии с результатом матричного умножения.
Использование метода imatmul позволяет легко реализовать матричное умножение с присваиванием для пользовательских классов. Это делает код более чистым и удобным для чтения, а также улучшает производительность за счет изменения объектов на месте.
Разъяснивший Python | ChatGPT
Реализация операции вычитания на месте для пользовательского класса
Метод isub в Python используется для реализации операции вычитания на месте (оператора -=). Этот метод позволяет изменять объект "на месте", что может быть полезно для оптимизации производительности и управления памятью.
Рассмотрим пример, в котором у нас есть класс, представляющий пользовательский список чисел. Мы хотим поддерживать операцию вычитания на месте как с обычными числами Python (int), так и с другими экземплярами нашего класса.
Этот лайфхак позволяет вашему классу поддерживать более гибкие и удобные операции вычитания на месте, что улучшает производительность и удобство использования, а также помогает избежать лишних копий данных.
Разъяснивший Python | ChatGPT
Метод isub в Python используется для реализации операции вычитания на месте (оператора -=). Этот метод позволяет изменять объект "на месте", что может быть полезно для оптимизации производительности и управления памятью.
Рассмотрим пример, в котором у нас есть класс, представляющий пользовательский список чисел. Мы хотим поддерживать операцию вычитания на месте как с обычными числами Python (int), так и с другими экземплярами нашего класса.
Этот лайфхак позволяет вашему классу поддерживать более гибкие и удобные операции вычитания на месте, что улучшает производительность и удобство использования, а также помогает избежать лишних копий данных.
Разъяснивший Python | ChatGPT
Расширение возможности операции побитового исключающего "или" для пользовательских объектов
Метод rxor в Python используется для реализации операции побитового исключающего "или" (оператора ^), когда операнд слева не поддерживает соответствующий метод xor. Этот метод полезен для работы с пользовательскими объектами, когда требуется поддерживать операцию побитового исключающего "или" с различными типами данных.
Рассмотрим пример, в котором у нас есть класс, представляющий пользовательские битовые данные, и мы хотим поддерживать операцию побитового исключающего "или" как с обычными числами Python (int), так и с другими экземплярами нашего класса.
Этот лайфхак позволяет сделать ваш класс более универсальным и поддерживать операции побитового исключающего "или" с различными типами данных, что повышает его гибкость и удобство использования.
Разъяснивший Python | ChatGPT
Метод rxor в Python используется для реализации операции побитового исключающего "или" (оператора ^), когда операнд слева не поддерживает соответствующий метод xor. Этот метод полезен для работы с пользовательскими объектами, когда требуется поддерживать операцию побитового исключающего "или" с различными типами данных.
Рассмотрим пример, в котором у нас есть класс, представляющий пользовательские битовые данные, и мы хотим поддерживать операцию побитового исключающего "или" как с обычными числами Python (int), так и с другими экземплярами нашего класса.
Этот лайфхак позволяет сделать ваш класс более универсальным и поддерживать операции побитового исключающего "или" с различными типами данных, что повышает его гибкость и удобство использования.
Разъяснивший Python | ChatGPT
NumPy: stack
numpy.stack() — это функция в библиотеке NumPy, которая объединяет несколько массивов в один. Например, если у тебя есть несколько одномерных массивов, ты можешь использовать numpy.stack() для объединения их в один многомерный массив.
Разъяснивший Python | ChatGPT
numpy.stack() — это функция в библиотеке NumPy, которая объединяет несколько массивов в один. Например, если у тебя есть несколько одномерных массивов, ты можешь использовать numpy.stack() для объединения их в один многомерный массив.
Разъяснивший Python | ChatGPT
Сравнение быстродействия def и lambda-функций Python. Производные функции
Иными словами — функция второго уровня вложенности служит для многократного вызова и создания во время каждого функции третьего уровня вложенности.
Разъяснивший Python | ChatGPT
Иными словами — функция второго уровня вложенности служит для многократного вызова и создания во время каждого функции третьего уровня вложенности.
Разъяснивший Python | ChatGPT
💩1
math.fabs
math.fabs — это функция, которая возвращает абсолютное значение числа в виде числа с плавающей точкой. В отличие от встроенной функции abs, которая может возвращать целое или число с плавающей точкой в зависимости от типа входного значения, math.fabs всегда возвращает значение типа float.
Разъяснивший Python | ChatGPT
math.fabs — это функция, которая возвращает абсолютное значение числа в виде числа с плавающей точкой. В отличие от встроенной функции abs, которая может возвращать целое или число с плавающей точкой в зависимости от типа входного значения, math.fabs всегда возвращает значение типа float.
Разъяснивший Python | ChatGPT
Сравнение быстродействия def и lambda-функций Python. Производные функции
А производная для функции построения графика — это же самая функция с определенными аргументами.
Мы будем проверять скорость создания и скорость выполнения разного вида функций.
Вернёмся к первому. В случае проверки скорости создания функции, функция_для_замера() будет иметь одну цель — создать внутри себя def или lambda функцию. Её мы будем вызывать множество раз, и каждый раз она будет создавать одну и ту же функцию заново.
Разъяснивший Python | ChatGPT
А производная для функции построения графика — это же самая функция с определенными аргументами.
Мы будем проверять скорость создания и скорость выполнения разного вида функций.
Вернёмся к первому. В случае проверки скорости создания функции, функция_для_замера() будет иметь одну цель — создать внутри себя def или lambda функцию. Её мы будем вызывать множество раз, и каждый раз она будет создавать одну и ту же функцию заново.
Разъяснивший Python | ChatGPT
😐2
Сравнение быстродействия def и lambda-функций Python. Производные функции
Слабонервным людям, ненавидящим многоуровневые вложения, не читать.
Для ранее описанных общих функций можно создавать бесконечно много проиводных. Для производной замера скорости структура такая
Разъяснивший Python | ChatGPT
Слабонервным людям, ненавидящим многоуровневые вложения, не читать.
Для ранее описанных общих функций можно создавать бесконечно много проиводных. Для производной замера скорости структура такая
Разъяснивший Python | ChatGPT
sorted
Функция sorted() возвращает отсортированный список элементов из указанного итерируемого объекта. Она не изменяет исходный объект, а возвращает новый отсортированный список. По умолчанию сортировка происходит по возрастанию, но с помощью параметра reverse=True можно изменить направление на убывание.
Разъяснивший Python | ChatGPT
Функция sorted() возвращает отсортированный список элементов из указанного итерируемого объекта. Она не изменяет исходный объект, а возвращает новый отсортированный список. По умолчанию сортировка происходит по возрастанию, но с помощью параметра reverse=True можно изменить направление на убывание.
Разъяснивший Python | ChatGPT
🔥2
Fabulous — вывод картинок в консоль
Вам не достаточно красивого вывода таблиц в консоль? А как насчёт вывода текста с тенями или даже картинок? Теперь это возможно!
Использовать только в небольших количествах во избежание перелома чувства прекрасного
🔗 Ссылочка на доку
Разъяснивший Python | ChatGPT
Вам не достаточно красивого вывода таблиц в консоль? А как насчёт вывода текста с тенями или даже картинок? Теперь это возможно!
Использовать только в небольших количествах во избежание перелома чувства прекрасного
🔗 Ссылочка на доку
Разъяснивший Python | ChatGPT
🌭2💩1
math.fabs
math.fabs — это функция, которая возвращает абсолютное значение числа в виде числа с плавающей точкой. В отличие от встроенной функции abs, которая может возвращать целое или число с плавающей точкой в зависимости от типа входного значения, math.fabs всегда возвращает значение типа float.
Разъяснивший Python | ChatGPT
math.fabs — это функция, которая возвращает абсолютное значение числа в виде числа с плавающей точкой. В отличие от встроенной функции abs, которая может возвращать целое или число с плавающей точкой в зависимости от типа входного значения, math.fabs всегда возвращает значение типа float.
Разъяснивший Python | ChatGPT
Сравнение быстродействия def и lambda-функций Python. Функции для упрощения жизни
Кому захочется повторять одно и то действие, но с разными параметрами? Никому. Поэтому, есть некоторые вспомогательные функции, для рисования графика по заданным параметрам, для создания черепахи. Кстати, о последнем — черепахи тоже заносятся в общий словарь.
Разъяснивший Python | ChatGPT
Кому захочется повторять одно и то действие, но с разными параметрами? Никому. Поэтому, есть некоторые вспомогательные функции, для рисования графика по заданным параметрам, для создания черепахи. Кстати, о последнем — черепахи тоже заносятся в общий словарь.
Разъяснивший Python | ChatGPT
math.log1p
Функция math.log1p используется для вычисления значения натурального логарифма от 1 + x. Она особенно полезна, когда x близко к нулю, так как обеспечивает высокую точность и избегает потери значимости в младших разрядах, которая может происходить при использовании math.log(1 + x).
Разъяснивший Python | ChatGPT
Функция math.log1p используется для вычисления значения натурального логарифма от 1 + x. Она особенно полезна, когда x близко к нулю, так как обеспечивает высокую точность и избегает потери значимости в младших разрядах, которая может происходить при использовании math.log(1 + x).
Разъяснивший Python | ChatGPT
Сравнение быстродействия def и lambda-функций Python. Общие функции
Всего у нас будет 2 диаграммы: полная и усредненная. В каждой по 2 графика: для def и lambda функций. Всего нам потребуется 4 черепахи.
Список значений для 1 и 2 графика очевиден — несколько результатов выполнения замера скорости. С 3 и 4 всё сложнее — нужно найти среднее арифметическое одного из 2 первых графиков.
Дабы слишком не заморачиваться над тем, чтобы график никуда не вылезал, найдём разницу между каждым элементом каждого графика и средним значением между средними арифметическими из 1 и 2 графика. В итоге, на графике мы будем видеть не общее значение, а разницу.
Разъяснивший Python | ChatGPT
Всего у нас будет 2 диаграммы: полная и усредненная. В каждой по 2 графика: для def и lambda функций. Всего нам потребуется 4 черепахи.
Список значений для 1 и 2 графика очевиден — несколько результатов выполнения замера скорости. С 3 и 4 всё сложнее — нужно найти среднее арифметическое одного из 2 первых графиков.
Дабы слишком не заморачиваться над тем, чтобы график никуда не вылезал, найдём разницу между каждым элементом каждого графика и средним значением между средними арифметическими из 1 и 2 графика. В итоге, на графике мы будем видеть не общее значение, а разницу.
Разъяснивший Python | ChatGPT
Сравнение быстродействия def и lambda-функций Python. Общие функции
В нашем коде для измерения быстродействия нужна соответствующая функция. Она будет главной для всех производных. Прежде всего, мы будем измерять время выполнения не один раз — слишком велика погрешность. Функция будет принимать в аргументы функцию, для которой проводится замер, а также количество повторений этой функции.
Для самого измерения мы будем использовать разницу во времени между началом выполнения и концом.
Разъяснивший Python | ChatGPT
В нашем коде для измерения быстродействия нужна соответствующая функция. Она будет главной для всех производных. Прежде всего, мы будем измерять время выполнения не один раз — слишком велика погрешность. Функция будет принимать в аргументы функцию, для которой проводится замер, а также количество повторений этой функции.
Для самого измерения мы будем использовать разницу во времени между началом выполнения и концом.
Разъяснивший Python | ChatGPT
💩3