Сравнение быстродействия def и lambda-функций Python. Функции для упрощения жизни
Кому захочется повторять одно и то действие, но с разными параметрами? Никому. Поэтому, есть некоторые вспомогательные функции, для рисования графика по заданным параметрам, для создания черепахи. Кстати, о последнем — черепахи тоже заносятся в общий словарь.
Разъяснивший Python | ChatGPT
Кому захочется повторять одно и то действие, но с разными параметрами? Никому. Поэтому, есть некоторые вспомогательные функции, для рисования графика по заданным параметрам, для создания черепахи. Кстати, о последнем — черепахи тоже заносятся в общий словарь.
Разъяснивший Python | ChatGPT
math.log1p
Функция math.log1p используется для вычисления значения натурального логарифма от 1 + x. Она особенно полезна, когда x близко к нулю, так как обеспечивает высокую точность и избегает потери значимости в младших разрядах, которая может происходить при использовании math.log(1 + x).
Разъяснивший Python | ChatGPT
Функция math.log1p используется для вычисления значения натурального логарифма от 1 + x. Она особенно полезна, когда x близко к нулю, так как обеспечивает высокую точность и избегает потери значимости в младших разрядах, которая может происходить при использовании math.log(1 + x).
Разъяснивший Python | ChatGPT
Сравнение быстродействия def и lambda-функций Python. Общие функции
Всего у нас будет 2 диаграммы: полная и усредненная. В каждой по 2 графика: для def и lambda функций. Всего нам потребуется 4 черепахи.
Список значений для 1 и 2 графика очевиден — несколько результатов выполнения замера скорости. С 3 и 4 всё сложнее — нужно найти среднее арифметическое одного из 2 первых графиков.
Дабы слишком не заморачиваться над тем, чтобы график никуда не вылезал, найдём разницу между каждым элементом каждого графика и средним значением между средними арифметическими из 1 и 2 графика. В итоге, на графике мы будем видеть не общее значение, а разницу.
Разъяснивший Python | ChatGPT
Всего у нас будет 2 диаграммы: полная и усредненная. В каждой по 2 графика: для def и lambda функций. Всего нам потребуется 4 черепахи.
Список значений для 1 и 2 графика очевиден — несколько результатов выполнения замера скорости. С 3 и 4 всё сложнее — нужно найти среднее арифметическое одного из 2 первых графиков.
Дабы слишком не заморачиваться над тем, чтобы график никуда не вылезал, найдём разницу между каждым элементом каждого графика и средним значением между средними арифметическими из 1 и 2 графика. В итоге, на графике мы будем видеть не общее значение, а разницу.
Разъяснивший Python | ChatGPT
Сравнение быстродействия def и lambda-функций Python. Общие функции
В нашем коде для измерения быстродействия нужна соответствующая функция. Она будет главной для всех производных. Прежде всего, мы будем измерять время выполнения не один раз — слишком велика погрешность. Функция будет принимать в аргументы функцию, для которой проводится замер, а также количество повторений этой функции.
Для самого измерения мы будем использовать разницу во времени между началом выполнения и концом.
Разъяснивший Python | ChatGPT
В нашем коде для измерения быстродействия нужна соответствующая функция. Она будет главной для всех производных. Прежде всего, мы будем измерять время выполнения не один раз — слишком велика погрешность. Функция будет принимать в аргументы функцию, для которой проводится замер, а также количество повторений этой функции.
Для самого измерения мы будем использовать разницу во времени между началом выполнения и концом.
Разъяснивший Python | ChatGPT
💩3
PyDy
PyDy — это библиотека Python для динамического моделирования и управления роботами. Она позволяет создавать модели роботов, симулировать их движение и управлять ими.
Разъяснивший Python | ChatGPT
PyDy — это библиотека Python для динамического моделирования и управления роботами. Она позволяет создавать модели роботов, симулировать их движение и управлять ими.
Разъяснивший Python | ChatGPT
Конкатенация строк
Если нужно конкатенировать список строк, сделать это можно в цикле
Более эффективный подход к решению этой задачи заключается в использовании функции
Разъяснивший Python | ChatGPT
Если нужно конкатенировать список строк, сделать это можно в цикле
for, по одной добавляя строки к итоговому результату. Однако такой подход будет весьма неэффективным, особенно в том случае, если список оказывается достаточно длинным. В Python строки являются иммутабельными сущностями. В результате каждая операция по конкатенации строк означает необходимость копирования пары строк в новую строку.Более эффективный подход к решению этой задачи заключается в использовании функции
join()Разъяснивший Python | ChatGPT
F-строки
Сложно делать что-либо без строк в Python и чтобы сохранить адекватность, вам нужно иметь структурированный способ работы со строками. Большая часть людей, работающих с Python, предпочитают метод format python.
Разъяснивший Python | ChatGPT
Сложно делать что-либо без строк в Python и чтобы сохранить адекватность, вам нужно иметь структурированный способ работы со строками. Большая часть людей, работающих с Python, предпочитают метод format python.
Разъяснивший Python | ChatGPT
👎1
math.log1p
Функция math.log1p используется для вычисления значения натурального логарифма от 1 + x. Она особенно полезна, когда x близко к нулю, так как обеспечивает высокую точность и избегает потери значимости в младших разрядах, которая может происходить при использовании math.log(1 + x).
Разъяснивший Python | ChatGPT
Функция math.log1p используется для вычисления значения натурального логарифма от 1 + x. Она особенно полезна, когда x близко к нулю, так как обеспечивает высокую точность и избегает потери значимости в младших разрядах, которая может происходить при использовании math.log(1 + x).
Разъяснивший Python | ChatGPT
👍1
Настраиваемый логгер-декоратор
Начнем с примера использования. Так мы не перегружаем внимание внутренней сложностью и повышаем шансы создать удачный интерфейс модуля. На этом принципе основана разработка через тестирование — test-driven development (TTD).
У класса
Разъяснивший Python | ChatGPT
Начнем с примера использования. Так мы не перегружаем внимание внутренней сложностью и повышаем шансы создать удачный интерфейс модуля. На этом принципе основана разработка через тестирование — test-driven development (TTD).
У класса
Logger есть метод log_msg(), который можно использовать напрямую внутри функций.Разъяснивший Python | ChatGPT
XlsxWriter для записи файлов в формате Excel
XlsxWriter — это очень мощный модуль Python для записи файлов в формате Excel. Он поддерживает добавление текста, чисел, формул, изображений и макросов Excel — среди прочих функциональных возможностей.
XlsxWriter даже интегрируется с pandas, известным пакетом Python для работы с данными.
Ссылочка на доку
Разъяснивший Python | ChatGPT
XlsxWriter — это очень мощный модуль Python для записи файлов в формате Excel. Он поддерживает добавление текста, чисел, формул, изображений и макросов Excel — среди прочих функциональных возможностей.
XlsxWriter даже интегрируется с pandas, известным пакетом Python для работы с данными.
Ссылочка на доку
Разъяснивший Python | ChatGPT
Анатомия декоратора в Python
Создадим декоратор
Разъяснивший Python | ChatGPT
Создадим декоратор
@hello_decorator.
Декоратор в Python — функция, которая принимает функцию/класс и возвращает функцию/класс. В примере декоратор hello_decorator() принимает функцию f(), и возвращает функцию wrapper().Разъяснивший Python | ChatGPT
Сложение списков
Не всегда операторы в python ведут себя так, как мы привыкли. Например сложение списков.
Как видно, инструкция 28 в случае
Разъяснивший Python | ChatGPT
Не всегда операторы в python ведут себя так, как мы привыкли. Например сложение списков.
Как видно, инструкция 28 в случае
+ простое сложение, а в случае += — сложение на месте, которое не приводит к созданию нового списка. += в данном случае сопоставим по производительности с list.extend.Разъяснивший Python | ChatGPT
Сложение списков
Не всегда операторы в python ведут себя так, как мы привыкли. Например сложение списков.
Как видно, инструкция 28 в случае
Разъяснивший Python | ChatGPT
Не всегда операторы в python ведут себя так, как мы привыкли. Например сложение списков.
Как видно, инструкция 28 в случае
+ простое сложение, а в случае += — сложение на месте, которое не приводит к созданию нового списка. += в данном случае сопоставим по производительности с list.extend.Разъяснивший Python | ChatGPT
🤷♂4❤1😁1💩1
PyForest: Один импорт для всех важных модулей
Импортируйте все ключевые библиотеки Python одной строкой. Это удобно для всех ваших проектов по Data Science и при создании нового окружения в Conda.
При работе с данными вы используете библиотеки, такие как pandas, matplotlib, seaborn, numpy и sklearn. Прежде чем приступить к работе, нужно их импортировать.
Библиотека решает несколько проблем:
• Однообразие: импорт всегда одинаковый и скучный.
• Пропущенные импорты мешают работе.
• Иногда нужно искать точные строки импорта, например, import matplotlib.pyplot as plt или from sklearn.ensemble import GradientBoostingRegressor.
Ссылочка на доку
Разъяснивший Python | ChatGPT
Импортируйте все ключевые библиотеки Python одной строкой. Это удобно для всех ваших проектов по Data Science и при создании нового окружения в Conda.
При работе с данными вы используете библиотеки, такие как pandas, matplotlib, seaborn, numpy и sklearn. Прежде чем приступить к работе, нужно их импортировать.
Библиотека решает несколько проблем:
• Однообразие: импорт всегда одинаковый и скучный.
• Пропущенные импорты мешают работе.
• Иногда нужно искать точные строки импорта, например, import matplotlib.pyplot as plt или from sklearn.ensemble import GradientBoostingRegressor.
Ссылочка на доку
Разъяснивший Python | ChatGPT
Генераторные выражения
Попробуем использовать генераторные выражения (для получения среза будем использовать функцию islice из itertools, которая возвращает итератор по срезу)
Итог: увеличение производительности более чем в 3 раза.
Разъяснивший Python | ChatGPT
Попробуем использовать генераторные выражения (для получения среза будем использовать функцию islice из itertools, которая возвращает итератор по срезу)
Итог: увеличение производительности более чем в 3 раза.
Разъяснивший Python | ChatGPT
👍1😱1
math.erfc
Функция math.erfc используется в тех же областях, что и math.erf, но применяется чаще для вычислений вероятностей, связанных с нормальным распределением. Например, в статистике и теории вероятностей для вычисления вероятности того, что случайная величина из нормального распределения примет значение за пределами заданного диапазона.
Разъяснивший Python | ChatGPT
Функция math.erfc используется в тех же областях, что и math.erf, но применяется чаще для вычислений вероятностей, связанных с нормальным распределением. Например, в статистике и теории вероятностей для вычисления вероятности того, что случайная величина из нормального распределения примет значение за пределами заданного диапазона.
Разъяснивший Python | ChatGPT
🤷♂1
Autoviz: Автоматическая визуализация любого набора данных одной командой
Визуализация используется для показа данных с помощью графиков и диаграмм. В Data Science визуализация помогает понять наборы данных и найти связи между ними. Она также помогает выявить закономерности для дальнейшего анализа.
Для визуализации данных в Python часто используют Matplotlib, Seaborn, Plotly и другие. Но перед использованием этих библиотек нужно определить тип графика и аргументы. AutoViz решает эту проблему, быстро предоставляя нужную информацию.
Ссылочка на доку
Разъяснивший Python | ChatGPT
Визуализация используется для показа данных с помощью графиков и диаграмм. В Data Science визуализация помогает понять наборы данных и найти связи между ними. Она также помогает выявить закономерности для дальнейшего анализа.
Для визуализации данных в Python часто используют Matplotlib, Seaborn, Plotly и другие. Но перед использованием этих библиотек нужно определить тип графика и аргументы. AutoViz решает эту проблему, быстро предоставляя нужную информацию.
Ссылочка на доку
Разъяснивший Python | ChatGPT
👍2👎1
Списковые включения
Python часто ругают за то, что он медленный. Однако в нем существует несколько подходов, которые позволяют писать достаточно быстрый код.
Например у нас есть большой список словарей (объявления контекстной рекламы). Зададим начальное время выборки и конечное.
И попробуем выбрать все объявления, ставка которых выше 600 и дата попадает в выбранный интервал. Затем возьмем первые 1000 элементов полученного списка.
Как видим этот метод работает быстрее.
Разъяснивший Python | ChatGPT
Python часто ругают за то, что он медленный. Однако в нем существует несколько подходов, которые позволяют писать достаточно быстрый код.
Например у нас есть большой список словарей (объявления контекстной рекламы). Зададим начальное время выборки и конечное.
И попробуем выбрать все объявления, ставка которых выше 600 и дата попадает в выбранный интервал. Затем возьмем первые 1000 элементов полученного списка.
Как видим этот метод работает быстрее.
Разъяснивший Python | ChatGPT
math.log
Функция math.log используется для вычисления натурального логарифма числа x или логарифма x по указанному основанию base. Если base не указан, то по умолчанию используется основание e (число Эйлера, примерно 2.718).
Разъяснивший Python | ChatGPT
Функция math.log используется для вычисления натурального логарифма числа x или логарифма x по указанному основанию base. Если base не указан, то по умолчанию используется основание e (число Эйлера, примерно 2.718).
Разъяснивший Python | ChatGPT
Однострочный условный оператор (тернарный оператор)
В Python существует возможность использовать однострочный условный оператор, который позволяет сократить код и сделать его более лаконичным. Это особенно полезно для простых условий, которые можно выразить в одной строке.
Использование тернарного оператора позволяет упростить код, особенно когда нужно выполнить простое условие и присвоить значение одной переменной на основе этого условия.
Разъяснивший Python | ChatGPT
В Python существует возможность использовать однострочный условный оператор, который позволяет сократить код и сделать его более лаконичным. Это особенно полезно для простых условий, которые можно выразить в одной строке.
Использование тернарного оператора позволяет упростить код, особенно когда нужно выполнить простое условие и присвоить значение одной переменной на основе этого условия.
Разъяснивший Python | ChatGPT
Сравнение быстродействия def и lambda-функций Python. Производные функции
А производная для функции построения графика — это же самая функция с определенными аргументами.
Мы будем проверять скорость создания и скорость выполнения разного вида функций.
Вернёмся к первому. В случае проверки скорости создания функции, функция_для_замера() будет иметь одну цель — создать внутри себя def или lambda функцию. Её мы будем вызывать множество раз, и каждый раз она будет создавать одну и ту же функцию заново.
Разъяснивший Python | ChatGPT
А производная для функции построения графика — это же самая функция с определенными аргументами.
Мы будем проверять скорость создания и скорость выполнения разного вида функций.
Вернёмся к первому. В случае проверки скорости создания функции, функция_для_замера() будет иметь одну цель — создать внутри себя def или lambda функцию. Её мы будем вызывать множество раз, и каждый раз она будет создавать одну и ту же функцию заново.
Разъяснивший Python | ChatGPT