Essential Topics to Master Data Science Interviews: 🚀
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some ❤️ if you're ready to elevate your data science journey! 📊
ENJOY LEARNING 👍👍
SQL:
1. Foundations
- Craft SELECT statements with WHERE, ORDER BY, GROUP BY, HAVING
- Embrace Basic JOINS (INNER, LEFT, RIGHT, FULL)
- Navigate through simple databases and tables
2. Intermediate SQL
- Utilize Aggregate functions (COUNT, SUM, AVG, MAX, MIN)
- Embrace Subqueries and nested queries
- Master Common Table Expressions (WITH clause)
- Implement CASE statements for logical queries
3. Advanced SQL
- Explore Advanced JOIN techniques (self-join, non-equi join)
- Dive into Window functions (OVER, PARTITION BY, ROW_NUMBER, RANK, DENSE_RANK, lead, lag)
- Optimize queries with indexing
- Execute Data manipulation (INSERT, UPDATE, DELETE)
Python:
1. Python Basics
- Grasp Syntax, variables, and data types
- Command Control structures (if-else, for and while loops)
- Understand Basic data structures (lists, dictionaries, sets, tuples)
- Master Functions, lambda functions, and error handling (try-except)
- Explore Modules and packages
2. Pandas & Numpy
- Create and manipulate DataFrames and Series
- Perfect Indexing, selecting, and filtering data
- Handle missing data (fillna, dropna)
- Aggregate data with groupby, summarizing data
- Merge, join, and concatenate datasets
3. Data Visualization with Python
- Plot with Matplotlib (line plots, bar plots, histograms)
- Visualize with Seaborn (scatter plots, box plots, pair plots)
- Customize plots (sizes, labels, legends, color palettes)
- Introduction to interactive visualizations (e.g., Plotly)
Excel:
1. Excel Essentials
- Conduct Cell operations, basic formulas (SUMIFS, COUNTIFS, AVERAGEIFS, IF, AND, OR, NOT & Nested Functions etc.)
- Dive into charts and basic data visualization
- Sort and filter data, use Conditional formatting
2. Intermediate Excel
- Master Advanced formulas (V/XLOOKUP, INDEX-MATCH, nested IF)
- Leverage PivotTables and PivotCharts for summarizing data
- Utilize data validation tools
- Employ What-if analysis tools (Data Tables, Goal Seek)
3. Advanced Excel
- Harness Array formulas and advanced functions
- Dive into Data Model & Power Pivot
- Explore Advanced Filter, Slicers, and Timelines in Pivot Tables
- Create dynamic charts and interactive dashboards
Power BI:
1. Data Modeling in Power BI
- Import data from various sources
- Establish and manage relationships between datasets
- Grasp Data modeling basics (star schema, snowflake schema)
2. Data Transformation in Power BI
- Use Power Query for data cleaning and transformation
- Apply advanced data shaping techniques
- Create Calculated columns and measures using DAX
3. Data Visualization and Reporting in Power BI
- Craft interactive reports and dashboards
- Utilize Visualizations (bar, line, pie charts, maps)
- Publish and share reports, schedule data refreshes
Statistics Fundamentals:
- Mean, Median, Mode
- Standard Deviation, Variance
- Probability Distributions, Hypothesis Testing
- P-values, Confidence Intervals
- Correlation, Simple Linear Regression
- Normal Distribution, Binomial Distribution, Poisson Distribution.
Show some ❤️ if you're ready to elevate your data science journey! 📊
ENJOY LEARNING 👍👍
❤25
For data analysts working with Python, mastering these top 10 concepts is essential:
1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.
2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.
3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.
4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.
5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.
6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.
7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.
8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.
9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.
10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.
Give credits while sharing: https://news.1rj.ru/str/pythonanalyst
ENJOY LEARNING 👍👍
1. Data Structures: Understand fundamental data structures like lists, dictionaries, tuples, and sets, as well as libraries like NumPy and Pandas for more advanced data manipulation.
2. Data Cleaning and Preprocessing: Learn techniques for cleaning and preprocessing data, including handling missing values, removing duplicates, and standardizing data formats.
3. Exploratory Data Analysis (EDA): Use libraries like Pandas, Matplotlib, and Seaborn to perform EDA, visualize data distributions, identify patterns, and explore relationships between variables.
4. Data Visualization: Master visualization libraries such as Matplotlib, Seaborn, and Plotly to create various plots and charts for effective data communication and storytelling.
5. Statistical Analysis: Gain proficiency in statistical concepts and methods for analyzing data distributions, conducting hypothesis tests, and deriving insights from data.
6. Machine Learning Basics: Familiarize yourself with machine learning algorithms and techniques for regression, classification, clustering, and dimensionality reduction using libraries like Scikit-learn.
7. Data Manipulation with Pandas: Learn advanced data manipulation techniques using Pandas, including merging, grouping, pivoting, and reshaping datasets.
8. Data Wrangling with Regular Expressions: Understand how to use regular expressions (regex) in Python to extract, clean, and manipulate text data efficiently.
9. SQL and Database Integration: Acquire basic SQL skills for querying databases directly from Python using libraries like SQLAlchemy or integrating with databases such as SQLite or MySQL.
10. Web Scraping and API Integration: Explore methods for retrieving data from websites using web scraping libraries like BeautifulSoup or interacting with APIs to access and analyze data from various sources.
Give credits while sharing: https://news.1rj.ru/str/pythonanalyst
ENJOY LEARNING 👍👍
❤6👍2
Most Asked SQL Interview Questions at MAANG Companies🔥🔥
Preparing for an SQL Interview at MAANG Companies? Here are some crucial SQL Questions you should be ready to tackle:
1. How do you retrieve all columns from a table?
SELECT * FROM table_name;
2. What SQL statement is used to filter records?
SELECT * FROM table_name
WHERE condition;
The WHERE clause is used to filter records based on a specified condition.
3. How can you join multiple tables? Describe different types of JOINs.
SELECT columns
FROM table1
JOIN table2 ON table1.column = table2.column
JOIN table3 ON table2.column = table3.column;
Types of JOINs:
1. INNER JOIN: Returns records with matching values in both tables
SELECT * FROM table1
INNER JOIN table2 ON table1.column = table2.column;
2. LEFT JOIN: Returns all records from the left table & matched records from the right table. Unmatched records will have NULL values.
SELECT * FROM table1
LEFT JOIN table2 ON table1.column = table2.column;
3. RIGHT JOIN: Returns all records from the right table & matched records from the left table. Unmatched records will have NULL values.
SELECT * FROM table1
RIGHT JOIN table2 ON table1.column = table2.column;
4. FULL JOIN: Returns records when there is a match in either left or right table. Unmatched records will have NULL values.
SELECT * FROM table1
FULL JOIN table2 ON table1.column = table2.column;
4. What is the difference between WHERE & HAVING clauses?
WHERE: Filters records before any groupings are made.
SELECT * FROM table_name
WHERE condition;
HAVING: Filters records after groupings are made.
SELECT column, COUNT(*)
FROM table_name
GROUP BY column
HAVING COUNT(*) > value;
5. How do you calculate average, sum, minimum & maximum values in a column?
Average: SELECT AVG(column_name) FROM table_name;
Sum: SELECT SUM(column_name) FROM table_name;
Minimum: SELECT MIN(column_name) FROM table_name;
Maximum: SELECT MAX(column_name) FROM table_name;
Here you can find essential SQL Interview Resources👇
https://news.1rj.ru/str/mysqldata
Like this post if you need more 👍❤️
Hope it helps :)
Preparing for an SQL Interview at MAANG Companies? Here are some crucial SQL Questions you should be ready to tackle:
1. How do you retrieve all columns from a table?
SELECT * FROM table_name;
2. What SQL statement is used to filter records?
SELECT * FROM table_name
WHERE condition;
The WHERE clause is used to filter records based on a specified condition.
3. How can you join multiple tables? Describe different types of JOINs.
SELECT columns
FROM table1
JOIN table2 ON table1.column = table2.column
JOIN table3 ON table2.column = table3.column;
Types of JOINs:
1. INNER JOIN: Returns records with matching values in both tables
SELECT * FROM table1
INNER JOIN table2 ON table1.column = table2.column;
2. LEFT JOIN: Returns all records from the left table & matched records from the right table. Unmatched records will have NULL values.
SELECT * FROM table1
LEFT JOIN table2 ON table1.column = table2.column;
3. RIGHT JOIN: Returns all records from the right table & matched records from the left table. Unmatched records will have NULL values.
SELECT * FROM table1
RIGHT JOIN table2 ON table1.column = table2.column;
4. FULL JOIN: Returns records when there is a match in either left or right table. Unmatched records will have NULL values.
SELECT * FROM table1
FULL JOIN table2 ON table1.column = table2.column;
4. What is the difference between WHERE & HAVING clauses?
WHERE: Filters records before any groupings are made.
SELECT * FROM table_name
WHERE condition;
HAVING: Filters records after groupings are made.
SELECT column, COUNT(*)
FROM table_name
GROUP BY column
HAVING COUNT(*) > value;
5. How do you calculate average, sum, minimum & maximum values in a column?
Average: SELECT AVG(column_name) FROM table_name;
Sum: SELECT SUM(column_name) FROM table_name;
Minimum: SELECT MIN(column_name) FROM table_name;
Maximum: SELECT MAX(column_name) FROM table_name;
Here you can find essential SQL Interview Resources👇
https://news.1rj.ru/str/mysqldata
Like this post if you need more 👍❤️
Hope it helps :)
❤15👍3
🚀 Essential Python/ Pandas snippets to explore data:
1. .head() - Review top rows
2. .tail() - Review bottom rows
3. .info() - Summary of DataFrame
4. .shape - Shape of DataFrame
5. .describe() - Denoscriptive stats
6. .isnull().sum() - Check missing values
7. .dtypes - Data types of columns
8. .unique() - Unique values in a column
9. .nunique() - Count unique values
10. .value_counts() - Value counts in a column
11. .corr() - Correlation matrix
1. .head() - Review top rows
2. .tail() - Review bottom rows
3. .info() - Summary of DataFrame
4. .shape - Shape of DataFrame
5. .describe() - Denoscriptive stats
6. .isnull().sum() - Check missing values
7. .dtypes - Data types of columns
8. .unique() - Unique values in a column
9. .nunique() - Count unique values
10. .value_counts() - Value counts in a column
11. .corr() - Correlation matrix
❤14👍1
Master the hottest skill in tech: building intelligent AI systems that think and act independently.
Join Ready Tensor’s free, hands-on program to build smart chatbots, AI assistants and multi-agent systems.
𝗘𝗮𝗿𝗻 𝗽𝗿𝗼𝗳𝗲𝘀𝘀𝗶𝗼𝗻𝗮𝗹 𝗰𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 and 𝗴𝗲𝘁 𝗻𝗼𝘁𝗶𝗰𝗲𝗱 𝗯𝘆 𝘁𝗼𝗽 𝗔𝗜 𝗲𝗺𝗽𝗹𝗼𝘆𝗲𝗿𝘀.
𝗙𝗿𝗲𝗲. 𝗦𝗲𝗹𝗳-𝗽𝗮𝗰𝗲𝗱. 𝗖𝗮𝗿𝗲𝗲𝗿-𝗰𝗵𝗮𝗻𝗴𝗶𝗻𝗴.
👉 Join today:
https://go.readytensor.ai/cert-511-agentic-ai-certification
Double Tap ♥️ For More
Join Ready Tensor’s free, hands-on program to build smart chatbots, AI assistants and multi-agent systems.
𝗘𝗮𝗿𝗻 𝗽𝗿𝗼𝗳𝗲𝘀𝘀𝗶𝗼𝗻𝗮𝗹 𝗰𝗲𝗿𝘁𝗶𝗳𝗶𝗰𝗮𝘁𝗶𝗼𝗻 and 𝗴𝗲𝘁 𝗻𝗼𝘁𝗶𝗰𝗲𝗱 𝗯𝘆 𝘁𝗼𝗽 𝗔𝗜 𝗲𝗺𝗽𝗹𝗼𝘆𝗲𝗿𝘀.
𝗙𝗿𝗲𝗲. 𝗦𝗲𝗹𝗳-𝗽𝗮𝗰𝗲𝗱. 𝗖𝗮𝗿𝗲𝗲𝗿-𝗰𝗵𝗮𝗻𝗴𝗶𝗻𝗴.
👉 Join today:
https://go.readytensor.ai/cert-511-agentic-ai-certification
Double Tap ♥️ For More
www.readytensor.ai
Agentic AI Developer Certification Program by Ready Tensor
Learn to build chatbots, AI assistants, and multi-agent systems with Ready Tensor's free, self-paced, and beginner-friendly Agentic AI Developer Certification. View the full program guide and how to get certified.
❤6
🔟 Project Ideas for a data analyst
Customer Segmentation: Analyze customer data to segment them based on their behaviors, preferences, or demographics, helping businesses tailor their marketing strategies.
Churn Prediction: Build a model to predict customer churn, identifying factors that contribute to churn and proposing strategies to retain customers.
Sales Forecasting: Use historical sales data to create a predictive model that forecasts future sales, aiding inventory management and resource planning.
Market Basket Analysis: Analyze
transaction data to identify associations between products often purchased together, assisting retailers in optimizing product placement and cross-selling.
Sentiment Analysis: Analyze social media or customer reviews to gauge public sentiment about a product or service, providing valuable insights for brand reputation management.
Healthcare Analytics: Examine medical records to identify trends, patterns, or correlations in patient data, aiding in disease prediction, treatment optimization, and resource allocation.
Financial Fraud Detection: Develop algorithms to detect anomalous transactions and patterns in financial data, helping prevent fraud and secure transactions.
A/B Testing Analysis: Evaluate the results of A/B tests to determine the effectiveness of different strategies or changes on websites, apps, or marketing campaigns.
Energy Consumption Analysis: Analyze energy usage data to identify patterns and inefficiencies, suggesting strategies for optimizing energy consumption in buildings or industries.
Real Estate Market Analysis: Study housing market data to identify trends in property prices, rental rates, and demand, assisting buyers, sellers, and investors in making informed decisions.
Remember to choose a project that aligns with your interests and the domain you're passionate about.
Data Analyst Roadmap
https://news.1rj.ru/str/sqlspecialist/379
ENJOY LEARNING 👍👍
Customer Segmentation: Analyze customer data to segment them based on their behaviors, preferences, or demographics, helping businesses tailor their marketing strategies.
Churn Prediction: Build a model to predict customer churn, identifying factors that contribute to churn and proposing strategies to retain customers.
Sales Forecasting: Use historical sales data to create a predictive model that forecasts future sales, aiding inventory management and resource planning.
Market Basket Analysis: Analyze
transaction data to identify associations between products often purchased together, assisting retailers in optimizing product placement and cross-selling.
Sentiment Analysis: Analyze social media or customer reviews to gauge public sentiment about a product or service, providing valuable insights for brand reputation management.
Healthcare Analytics: Examine medical records to identify trends, patterns, or correlations in patient data, aiding in disease prediction, treatment optimization, and resource allocation.
Financial Fraud Detection: Develop algorithms to detect anomalous transactions and patterns in financial data, helping prevent fraud and secure transactions.
A/B Testing Analysis: Evaluate the results of A/B tests to determine the effectiveness of different strategies or changes on websites, apps, or marketing campaigns.
Energy Consumption Analysis: Analyze energy usage data to identify patterns and inefficiencies, suggesting strategies for optimizing energy consumption in buildings or industries.
Real Estate Market Analysis: Study housing market data to identify trends in property prices, rental rates, and demand, assisting buyers, sellers, and investors in making informed decisions.
Remember to choose a project that aligns with your interests and the domain you're passionate about.
Data Analyst Roadmap
https://news.1rj.ru/str/sqlspecialist/379
ENJOY LEARNING 👍👍
❤7
🚀 Agentic AI Developer Certification Program
🔥 100% FREE | Self-Paced | Career-Changing
👨💻 Learn to build:
✅ | Chatbots
✅ | AI Assistants
✅ | Multi-Agent Systems
⚡️ Master tools like LangChain, LangGraph, RAGAS, & more.
Join now ⤵️
https://go.readytensor.ai/cert-511-agentic-ai-certification
Double Tap ♥️ For More
🔥 100% FREE | Self-Paced | Career-Changing
👨💻 Learn to build:
✅ | Chatbots
✅ | AI Assistants
✅ | Multi-Agent Systems
⚡️ Master tools like LangChain, LangGraph, RAGAS, & more.
Join now ⤵️
https://go.readytensor.ai/cert-511-agentic-ai-certification
Double Tap ♥️ For More
❤6👍1
Data Analytics Projects List✨! 💼📊
Beginner-Level Projects 🏁
(Focus: Excel, SQL, data cleaning)
1️⃣ Sales performance dashboard in Excel
2️⃣ Customer feedback summary using text data
3️⃣ Clean and analyze a CSV file with missing data
4️⃣ Product inventory analysis with pivot tables
5️⃣ Use SQL to query and visualize a retail dataset
6️⃣ Create a revenue tracker by month and category
7️⃣ Analyze demographic data from a survey
8️⃣ Market share analysis across product lines
9️⃣ Simple cohort analysis using Excel
🔟 User signup trends using SQL GROUP BY and DATE
Intermediate-Level Projects 🚀
(Focus: Python, data visualization, EDA)
1️⃣ Churn analysis from telco dataset using Python
2️⃣ Power BI sales dashboard with filters & slicers
3️⃣ E-commerce data segmentation with clustering
4️⃣ Forecast site traffic using moving averages
5️⃣ Analyze Netflix/Bollywood IMDB datasets
6️⃣ A/B test results evaluation for marketing campaign
7️⃣ Customer lifetime value prediction
8️⃣ Explore correlations in vaccination or health datasets
9️⃣ Predict loan approval using logistic regression
🔟 Create a Tableau dashboard highlighting HR insights
Advanced-Level Projects 🔥
(Focus: Machine learning, big data, real-world scenarios)
1️⃣ Fraud detection using anomaly detection on banking data
2️⃣ Real-time dashboard using streaming data (Power BI + API)
3️⃣ Predictive model for sales forecasting with ML
4️⃣ NLP sentiment analysis of product reviews or tweets
5️⃣ Recommender system for e-commerce products
6️⃣ Build ETL pipeline (Python + SQL + cloud storage)
7️⃣ Analyze and visualize stock market trends
8️⃣ Big data analysis using Spark on a large dataset
9️⃣ Create a data compliance audit dashboard
🔟 Geospatial heatmap of business locations vs revenue
📂 Pro Tip: Host these on GitHub, add visuals, and explain your process—great for impressing recruiters! 🙌
💬 React ♥️ for more
Beginner-Level Projects 🏁
(Focus: Excel, SQL, data cleaning)
1️⃣ Sales performance dashboard in Excel
2️⃣ Customer feedback summary using text data
3️⃣ Clean and analyze a CSV file with missing data
4️⃣ Product inventory analysis with pivot tables
5️⃣ Use SQL to query and visualize a retail dataset
6️⃣ Create a revenue tracker by month and category
7️⃣ Analyze demographic data from a survey
8️⃣ Market share analysis across product lines
9️⃣ Simple cohort analysis using Excel
🔟 User signup trends using SQL GROUP BY and DATE
Intermediate-Level Projects 🚀
(Focus: Python, data visualization, EDA)
1️⃣ Churn analysis from telco dataset using Python
2️⃣ Power BI sales dashboard with filters & slicers
3️⃣ E-commerce data segmentation with clustering
4️⃣ Forecast site traffic using moving averages
5️⃣ Analyze Netflix/Bollywood IMDB datasets
6️⃣ A/B test results evaluation for marketing campaign
7️⃣ Customer lifetime value prediction
8️⃣ Explore correlations in vaccination or health datasets
9️⃣ Predict loan approval using logistic regression
🔟 Create a Tableau dashboard highlighting HR insights
Advanced-Level Projects 🔥
(Focus: Machine learning, big data, real-world scenarios)
1️⃣ Fraud detection using anomaly detection on banking data
2️⃣ Real-time dashboard using streaming data (Power BI + API)
3️⃣ Predictive model for sales forecasting with ML
4️⃣ NLP sentiment analysis of product reviews or tweets
5️⃣ Recommender system for e-commerce products
6️⃣ Build ETL pipeline (Python + SQL + cloud storage)
7️⃣ Analyze and visualize stock market trends
8️⃣ Big data analysis using Spark on a large dataset
9️⃣ Create a data compliance audit dashboard
🔟 Geospatial heatmap of business locations vs revenue
📂 Pro Tip: Host these on GitHub, add visuals, and explain your process—great for impressing recruiters! 🙌
💬 React ♥️ for more
❤17👍5🥰2
🚀 Essential Python/ Pandas snippets to explore data:
1. .head() - Review top rows
2. .tail() - Review bottom rows
3. .info() - Summary of DataFrame
4. .shape - Shape of DataFrame
5. .describe() - Denoscriptive stats
6. .isnull().sum() - Check missing values
7. .dtypes - Data types of columns
8. .unique() - Unique values in a column
9. .nunique() - Count unique values
10. .value_counts() - Value counts in a column
11. .corr() - Correlation matrix
1. .head() - Review top rows
2. .tail() - Review bottom rows
3. .info() - Summary of DataFrame
4. .shape - Shape of DataFrame
5. .describe() - Denoscriptive stats
6. .isnull().sum() - Check missing values
7. .dtypes - Data types of columns
8. .unique() - Unique values in a column
9. .nunique() - Count unique values
10. .value_counts() - Value counts in a column
11. .corr() - Correlation matrix
❤9👍7
🔥 Guys, Another Big Announcement!
I’m launching a Python Interview Series 🐍💼 — your complete guide to cracking Python interviews from beginner to advanced level!
This will be a week-by-week series designed to make you interview-ready — covering core concepts, coding questions, and real interview scenarios asked by top companies.
Here’s what’s coming your way 👇
🔹 Week 1: Python Fundamentals (Beginner Level)
• Data types, variables & operators
• If-else, loops & functions
• Input/output & basic problem-solving
💡 *Practice:* Reverse string, Prime check, Factorial, Palindrome
🔹 Week 2: Data Structures in Python
• Lists, Tuples, Sets, Dictionaries
• Comprehensions (list, dict, set)
• Sorting, searching, and nested structures
💡 *Practice:* Frequency count, remove duplicates, find max/min
🔹 Week 3: Functions, Modules & File Handling
•
• File read/write, CSV handling
• Modules & imports
💡 *Practice:* Create custom functions, read data files, handle errors
🔹 Week 4: Object-Oriented Programming (OOP)
• Classes, objects, inheritance, polymorphism
• Encapsulation & abstraction
• Magic methods (
💡 *Practice:* Build a simple class like BankAccount or StudentSystem
🔹 Week 5: Exception Handling & Logging
•
• Custom exceptions
• Logging errors & debugging best practices
💡 *Practice:* File operations with proper error handling
🔹 Week 6: Advanced Python Concepts
• Decorators, generators, iterators
• Closures & context managers
• Shallow vs deep copy
💡 *Practice:* Create your own decorator, generator examples
🔹 Week 7: Pandas & NumPy for Data Analysis
• DataFrame basics, filtering & grouping
• Handling missing data
• NumPy arrays, slicing, and aggregation
💡 *Practice:* Analyze small CSV datasets
🔹 Week 8: Python for Analytics & Visualization
• Matplotlib, Seaborn basics
• Data summarization & correlation
• Building simple dashboards
💡 *Practice:* Visualize sales or user data
🔹 Week 9: Real Interview Questions (Intermediate–Advanced)
• 50+ Python interview questions with answers
• Common logical & coding tasks
• Real company-style questions (Infosys, TCS, Deloitte, etc.)
💡 *Practice:* Solve daily problem sets
🔹 Week 10: Final Interview Prep (Mock & Revision)
• End-to-end mock interviews
• Python project discussion tips
• Resume & GitHub portfolio guidance
📌 Each week includes:
✅ Key Concepts & Examples
✅ Coding Snippets & Practice Tasks
✅ Real Interview Q&A
✅ Mini Quiz & Discussion
👍 React ❤️ if you’re ready to master Python interviews!
👇 You can access it from here: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/2099
I’m launching a Python Interview Series 🐍💼 — your complete guide to cracking Python interviews from beginner to advanced level!
This will be a week-by-week series designed to make you interview-ready — covering core concepts, coding questions, and real interview scenarios asked by top companies.
Here’s what’s coming your way 👇
🔹 Week 1: Python Fundamentals (Beginner Level)
• Data types, variables & operators
• If-else, loops & functions
• Input/output & basic problem-solving
💡 *Practice:* Reverse string, Prime check, Factorial, Palindrome
🔹 Week 2: Data Structures in Python
• Lists, Tuples, Sets, Dictionaries
• Comprehensions (list, dict, set)
• Sorting, searching, and nested structures
💡 *Practice:* Frequency count, remove duplicates, find max/min
🔹 Week 3: Functions, Modules & File Handling
•
*args, *kwargs, lambda, map/filter/reduce• File read/write, CSV handling
• Modules & imports
💡 *Practice:* Create custom functions, read data files, handle errors
🔹 Week 4: Object-Oriented Programming (OOP)
• Classes, objects, inheritance, polymorphism
• Encapsulation & abstraction
• Magic methods (
__init__, __str__)💡 *Practice:* Build a simple class like BankAccount or StudentSystem
🔹 Week 5: Exception Handling & Logging
•
try-except-else-finally• Custom exceptions
• Logging errors & debugging best practices
💡 *Practice:* File operations with proper error handling
🔹 Week 6: Advanced Python Concepts
• Decorators, generators, iterators
• Closures & context managers
• Shallow vs deep copy
💡 *Practice:* Create your own decorator, generator examples
🔹 Week 7: Pandas & NumPy for Data Analysis
• DataFrame basics, filtering & grouping
• Handling missing data
• NumPy arrays, slicing, and aggregation
💡 *Practice:* Analyze small CSV datasets
🔹 Week 8: Python for Analytics & Visualization
• Matplotlib, Seaborn basics
• Data summarization & correlation
• Building simple dashboards
💡 *Practice:* Visualize sales or user data
🔹 Week 9: Real Interview Questions (Intermediate–Advanced)
• 50+ Python interview questions with answers
• Common logical & coding tasks
• Real company-style questions (Infosys, TCS, Deloitte, etc.)
💡 *Practice:* Solve daily problem sets
🔹 Week 10: Final Interview Prep (Mock & Revision)
• End-to-end mock interviews
• Python project discussion tips
• Resume & GitHub portfolio guidance
📌 Each week includes:
✅ Key Concepts & Examples
✅ Coding Snippets & Practice Tasks
✅ Real Interview Q&A
✅ Mini Quiz & Discussion
👍 React ❤️ if you’re ready to master Python interviews!
👇 You can access it from here: https://whatsapp.com/channel/0029VaiM08SDuMRaGKd9Wv0L/2099
❤16